68 research outputs found

    Synthesis of Highly Functionalized Diazoacetoacetates and Their Synthetic Applications

    Get PDF
    ABSTRACT Title of dissertation: SYNTHESIS OF HIGHLY FUNCTIONALIZED DIAZOACETOACETATES AND THEIR SYNTHETIC APPLICATIONS Kousik Kundu, Doctor of Philosophy, 2006 Dissertation directed by: Professor Michael P. Doyle Department of Chemistry University of Maryland, College Park, MD 20742 I. Catalytic Addition Methods for the Synthesis of Functionalized Diazoacetoacetates We have developed efficient Mukaiyama aldol and Mannich addition reactions of readily accessible vinyldiazoacetates with aldehydes and imines using low catalytic amounts of commercially available Lewis acids. During the reaction the diazo functionality remained intact. The products are synthetically interesting as they are set to undergo a Rh(II)-catalyzed carbene reactions to form various complex carbocycles with multiple stereogenic centers. II. Constructing Chiral Diazoacetoacetates by Catalytic Highly Enantioselective Mukaiyama Aldol Addition Reactions Silver(I)-BINAP catalyzed highly enantioselective Mukaiyama aldol addition methodology has been developed for efficient synthesis of chiral diazoacetoacetates. Furthermore, in order to make this approach more practical as far as product yields and enantioselections are concerned, a novel Sc(III)-mixed ligands (heterochiral) catalyst has been developed. III. Synthetic Applications of Diazoacetoacetates Prepared by Mukaiyama Aldol Addition Reactions Diazoacetoacetate addition products from reactions with aromatic aldehydes undergo rhodium(II)-catalyzed ring closure to cyclobutanones with high diastereocontrol. TMS-protected Mukaiyama aldol adducts on the other hand go through similar ylide-derived pathway, but lead to dihydrofurans in excellent chemical yield. Diazoacetoacetates derived from aliphatic aldehydes form cyclopentanone by C--H insertion, but leads to dihydrofurans with TMS-protected adducts

    The influence of rare variants in circulating metabolic biomarkers.

    Get PDF
    Circulating metabolite levels are biomarkers for cardiovascular disease (CVD). Here we studied, association of rare variants and 226 serum lipoproteins, lipids and amino acids in 7,142 (discovery plus follow-up) healthy participants. We leveraged the information from multiple metabolite measurements on the same participants to improve discovery in rare variant association analyses for gene-based and gene-set tests by incorporating correlated metabolites as covariates in the validation stage. Gene-based analysis corrected for the effective number of tests performed, confirmed established associations at APOB, APOC3, PAH, HAL and PCSK (p<1.32x10-7) and identified novel gene-trait associations at a lower stringency threshold with ACSL1, MYCN, FBXO36 and B4GALNT3 (p<2.5x10-6). Regulation of the pyruvate dehydrogenase (PDH) complex was associated for the first time, in gene-set analyses also corrected for effective number of tests, with IDL and LDL parameters, as well as circulating cholesterol (pMETASKAT<2.41x10-6). In conclusion, using an approach that leverages metabolite measurements obtained in the same participants, we identified novel loci and pathways involved in the regulation of these important metabolic biomarkers. As large-scale biobanks continue to amass sequencing and phenotypic information, analytical approaches such as ours will be useful to fully exploit the copious amounts of biological data generated in these efforts

    Genetic perturbation of PU.1 binding and chromatin looping at neutrophil enhancers associates with autoimmune disease.

    Get PDF
    Neutrophils play fundamental roles in innate immune response, shape adaptive immunity, and are a potentially causal cell type underpinning genetic associations with immune system traits and diseases. Here, we profile the binding of myeloid master regulator PU.1 in primary neutrophils across nearly a hundred volunteers. We show that variants associated with differential PU.1 binding underlie genetically-driven differences in cell count and susceptibility to autoimmune and inflammatory diseases. We integrate these results with other multi-individual genomic readouts, revealing coordinated effects of PU.1 binding variants on the local chromatin state, enhancer-promoter contacts and downstream gene expression, and providing a functional interpretation for 27 genes underlying immune traits. Collectively, these results demonstrate the functional role of PU.1 and its target enhancers in neutrophil transcriptional control and immune disease susceptibility

    A map of transcriptional heterogeneity and regulatory variation in human microglia.

    Get PDF
    Microglia, the tissue-resident macrophages of the central nervous system (CNS), play critical roles in immune defense, development and homeostasis. However, isolating microglia from humans in large numbers is challenging. Here, we profiled gene expression variation in primary human microglia isolated from 141 patients undergoing neurosurgery. Using single-cell and bulk RNA sequencing, we identify how age, sex and clinical pathology influence microglia gene expression and which genetic variants have microglia-specific functions using expression quantitative trait loci (eQTL) mapping. We follow up one of our findings using a human induced pluripotent stem cell-based macrophage model to fine-map a candidate causal variant for Alzheimer's disease at the BIN1 locus. Our study provides a population-scale transcriptional map of a critically important cell for human CNS development and disease

    Attenuation of Helicobacter pylori-induced gastric inflammation by prior cag− strain (AM1) infection in C57BL/6 mice

    Get PDF
    Helicobacter pylori, colonize in stomach of ~50% of the world population. cag pathogenicity Island of H. pylori is one of the important virulent factors that attributed to gastric inflammation. Coinfection with H. pylori strain with different genetic makeup alters the degree of pathogenicity and susceptibility towards antibiotics. The present study investigates host immunomodulatory effects of H. pylori infection by both cag+ strain (SS1) and cag− strain (AM1). C57BL/6 mice were infected with AM1 or SS1 strain as well as AM1 followed by SS1 (AM1/SS1) and vice versa. Results: Mice infected with AM1/SS1 strain exhibited less gastric inflammation and reduced proMMP9 and proMMP3 activities in gastric tissues as compared to SS1/SS1 and SS1/AM1 infected groups. The expression of both MMP9 and MMP3 followed similar trend like activity in infected tissues. Both Th1 and Th17 responses were induced by SS1 strain more profoundly than AM1 strain infection which induced solely Th1 response in spleen and gastric tissues. Moreover, IFN-γ, TNF-α, IL-1β and IL-12 were significantly downregulated in mice spleen and gastric tissues infected by AM1/SS1 compared to SS1/SS1 but not with SS1/AM1 coinfection. Surprisingly, IL-17 level was dampened significantly in AM1/ SS1 compared to SS1/AM1 coinfected groups. Furthermore, number of Foxp3+ T-regulatory (Treg) cells and immunosuppressive cytokines like IL-10 and TGF-β were reduced in AM1/SS1 compared to SS1/SS1 and SS1/AM1 coinfected mice gastric tissues. Conclusions: These data suggested that prior H. pylori cag− strain infection attenuated the severity of gastric pathology induced by subsequent cag+ strain in C57BL/6 mice. Prior AM1 infection induced Th1 cytokine IFN-γ, which reduced the Th17 response induced by subsequent SS1 infection. The reduced gastritis in AM1/SS1-infected mice might also be due to enrichment of AM1- primed Treg cells in the gastric compartment which inhibit Th1 and Th17 responses to subsequent SS1 infection. In summary, prior infection by non-virulent H. pylori strain (AM1) causes reduction of subsequent virulent strain (SS1) infection by regulation of inflammatory cytokines and MMPs expressio

    Cohort-wide deep whole genome sequencing and the allelic architecture of complex traits.

    Get PDF
    The role of rare variants in complex traits remains uncharted. Here, we conduct deep whole genome sequencing of 1457 individuals from an isolated population, and test for rare variant burdens across six cardiometabolic traits. We identify a role for rare regulatory variation, which has hitherto been missed. We find evidence of rare variant burdens that are independent of established common variant signals (ADIPOQ and adiponectin, P = 4.2 × 10-8; APOC3 and triglyceride levels, P = 1.5 × 10-26), and identify replicating evidence for a burden associated with triglyceride levels in FAM189B (P = 2.2 × 10-8), indicating a role for this gene in lipid metabolism

    The Allelic Landscape of Human Blood Cell Trait Variation and Links to Common Complex Disease

    Get PDF
    Many common variants have been associated with hematological traits, but identification of causal genes and pathways has proven challenging. We performed a genome-wide association analysis in the UK Biobank and INTERVAL studies, testing 29.5 million genetic variants for association with 36 red cell, white cell, and platelet properties in 173,480 European-ancestry participants. This effort yielded hundreds of low frequency (<5%) and rare (<1%) variants with a strong impact on blood cell phenotypes. Our data highlight general properties of the allelic architecture of complex traits, including the proportion of the heritable component of each blood trait explained by the polygenic signal across different genome regulatory domains. Finally, through Mendelian randomization, we provide evidence of shared genetic pathways linking blood cell indices with complex pathologies, including autoimmune diseases, schizophrenia, and coronary heart disease and evidence suggesting previously reported population associations between blood cell indices and cardiovascular disease may be non-causal.We thank members of the Cambridge BioResource Scientific Advisory Board and Management Committee for their support of our study and the National Institute for Health Research Cambridge Biomedical Research Centre for funding. K.D. is funded as a HSST trainee by NHS Health Education England. M.F. is funded from the BLUEPRINT Grant Code HEALTH-F5-2011-282510 and the BHF Cambridge Centre of Excellence [RE/13/6/30180]. J.R.S. is funded by a MRC CASE Industrial studentship, co-funded by Pfizer. J.D. is a British Heart Foundation Professor, European Research Council Senior Investigator, and National Institute for Health Research (NIHR) Senior Investigator. S.M., S.T, M.H, K.M. and L.D. are supported by the NIHR BioResource-Rare Diseases, which is funded by NIHR. Research in the Ouwehand laboratory is supported by program grants from the NIHR to W.H.O., the European Commission (HEALTH-F2-2012-279233), the British Heart Foundation (BHF) to W.J.A. and D.R. under numbers RP-PG-0310-1002 and RG/09/12/28096 and Bristol Myers-Squibb; the laboratory also receives funding from NHSBT. W.H.O is a NIHR Senior Investigator. The INTERVAL academic coordinating centre receives core support from the UK Medical Research Council (G0800270), the BHF (SP/09/002), the NIHR and Cambridge Biomedical Research Centre, as well as grants from the European Research Council (268834), the European Commission Framework Programme 7 (HEALTH-F2-2012-279233), Merck and Pfizer. DJR and DA were supported by the NIHR Programme ‘Erythropoiesis in Health and Disease’ (Ref. NIHR-RP-PG-0310-1004). N.S. is supported by the Wellcome Trust (Grant Codes WT098051 and WT091310), the EU FP7 (EPIGENESYS Grant Code 257082 and BLUEPRINT Grant Code HEALTH-F5-2011-282510). The INTERVAL study is funded by NHSBT and has been supported by the NIHR-BTRU in Donor Health and Genomics at the University of Cambridge in partnership with NHSBT. The views expressed are those of the authors and not necessarily those of the NHS, the NIHR, the Department of Health of England or NHSBT. D.G. is supported by a “la Caixa”-Severo Ochoa pre-doctoral fellowship

    Exome-wide association study to identify rare variants influencing COVID-19 outcomes : Results from the Host Genetics Initiative

    Get PDF
    Publisher Copyright: Copyright: © 2022 Butler-Laporte et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Host genetics is a key determinant of COVID-19 outcomes. Previously, the COVID-19 Host Genetics Initiative genome-wide association study used common variants to identify multiple loci associated with COVID-19 outcomes. However, variants with the largest impact on COVID-19 outcomes are expected to be rare in the population. Hence, studying rare variants may provide additional insights into disease susceptibility and pathogenesis, thereby informing therapeutics development. Here, we combined whole-exome and whole-genome sequencing from 21 cohorts across 12 countries and performed rare variant exome-wide burden analyses for COVID-19 outcomes. In an analysis of 5,085 severe disease cases and 571,737 controls, we observed that carrying a rare deleterious variant in the SARS-CoV-2 sensor toll-like receptor TLR7 (on chromosome X) was associated with a 5.3-fold increase in severe disease (95% CI: 2.75–10.05, p = 5.41x10-7). This association was consistent across sexes. These results further support TLR7 as a genetic determinant of severe disease and suggest that larger studies on rare variants influencing COVID-19 outcomes could provide additional insights.Peer reviewe
    corecore