19 research outputs found
Los fosfopétidos de caseína aumentan drásticamente la secreción de proteínas extracelulares en Aspergillus awamori.Estudios de Proteómica revelan cambios en la vía secretora
Comunicaciones a congreso
ChLae1 and ChVel1 Regulate T-toxin Production, Virulence, Oxidative Stress Response, and Development of the Maize Pathogen Cochliobolus heterostrophus
LaeA and VeA coordinate secondary metabolism and differentiation in response to light signals in Aspergillus spp. Their orthologs, ChLae1 and ChVel1, were identified in the maize pathogen Cochliobolus heterostrophus, known to produce a wealth of secondary metabolites, including the host selective toxin, T-toxin. Produced by race T, T-toxin promotes high virulence to maize carrying Texas male sterile cytoplasm (T-cms). T-toxin production is significantly increased in the dark in wild type (WT), whereas Chvel1 and Chlae1 mutant toxin levels are much reduced in the dark compared to WT. Correspondingly, expression of T-toxin biosynthetic genes (Tox1) is up-regulated in the dark in WT, while dark-induced expression is much reduced/minimal in Chvel1 and Chlae1 mutants. Toxin production and Tox1 gene expression are increased in ChVEL1 overexpression (OE) strains grown in the dark and in ChLAE1 strains grown in either light or dark, compared to WT. These observations establish ChLae1 and ChVel1 as the first factors known to regulate host selective toxin production. Virulence of Chlae1 and Chvel1 mutants and OE strains is altered on both T-cms and normal cytoplasm maize, indicating that both T-toxin mediated super virulence and basic pathogenic ability are affected. Deletion of ChLAE1 or ChVEL1 reduces tolerance to H2O2. Expression of CAT3, one of the three catalase genes, is reduced in the Chvel1 mutant. Chlae1 and Chvel1 mutants also show decreased aerial hyphal growth, increased asexual sporulation and female sterility. ChLAE1 OE strains are female sterile, while ChVEL1 OE strains are more fertile than WT. ChLae1 and ChVel1 repress expression of 1,8-dihydroxynaphthalene (DHN) melanin biosynthesis genes, and, accordingly, melanization is enhanced in Chlae1 and Chvel1 mutants, and reduced in OE strains. Thus, ChLae1 and ChVel1 positively regulate T-toxin biosynthesis, pathogenicity and super virulence, oxidative stress responses, sexual development, and aerial hyphal growth, and negatively control melanin biosynthesis and asexual differentiation
Biosynthesis of Astaxanthin as a Main Carotenoid in the Heterobasidiomycetous Yeast Xanthophyllomyces dendrorhous
Carotenoids are organic lipophilic yellow to orange and reddish pigments of terpenoid nature that are usually composed of eight isoprene units. This group of secondary metabolites includes carotenes and xanthophylls, which can be naturally obtained from photosynthetic organisms, some fungi, and bacteria. One of the microorganisms able to synthesise carotenoids is the heterobasidiomycetous yeast Xanthophyllomyces dendrorhous, which represents the teleomorphic state of Phaffia rhodozyma, and is mainly used for the production of the xanthophyll astaxanthin. Upgraded knowledge on the biosynthetic pathway of the main carotenoids synthesised by X. dendrorhous, the biotechnology-based improvement of astaxanthin production, as well as the current omics approaches available in this yeast are reviewed in depth
Casein phosphopeptides and CaCl2 increase penicillin production and cause an increment in microbody/peroxisome proteins in Penicillium chrysogenum
[EN] Transport of penicillin intermediates and penicillin secretion are still poorly characterized in Penicillium chrysogenum (re-identified as Penicillium rubens). Calcium (Ca2+) plays an important role in the metabolism of filamentous fungi, and casein phosphopeptides (CPP) are involved in Ca2+ internalization. In this study we observe that the effect of CaCl2 and CPP is additive and promotes an increase in penicillin production of up to 10-12 fold. Combination of CaCl2 and CPP greatly promotes expression of the three penicillin biosynthetic genes. Comparative proteomic analysis by 2D-DIGE, identified 39 proteins differentially represented in P. chrysogenum Wisconsin 54-1255 after CPP/CaCl2 addition. The most interesting group of overrepresented proteins were a peroxisomal catalase, three proteins of the methylcitrate cycle, two aminotransferases and cystationine -synthase, which are directly or indirectly related to the formation of penicillin amino acid precursors. Importantly, two of the enzymes of the penicillin pathway (isopenicillin N synthase and isopenicillin N acyltransferase) are clearly induced after CPP/CaCl2 addition. Most of these overrepresented proteins are either authentic peroxisomal proteins or microbodyassociated proteins. This evidence suggests that addition of CPP/CaCl2 promotes the formation of penicillin precursors and the penicillin biosynthetic enzymes in peroxisomes and vesicles, which may be involved in transport and secretion of penicillinSIWe especially thank P. Liras (University of León, Spain) for valuable scientific discussions. We acknowledge the excellent technical assistance of B. Martín and J. Merino (INBIOTEC, Spain). R. Domínguez-Santos was granted a fellowship from Junta de Castilla y León (ORDEN EDU/1204/2010) cofinanced by the Fondo Social Europe
Biosynthetic concepts for the production of β-lactam antibiotics in Penicillium chrysogenum
Industrial production of β-lactam antibiotics by the filamentous fungus Penicillium chrysogenum is based on successive classical strain improvement cycles. This review summarizes our current knowledge on the results of this classical strain improvement process, and discusses avenues to improve β-lactam biosynthesis and to exploit P. chrysogenum as an industrial host for the production of other antibiotics and peptide products. Genomic and transcriptional analysis of strain lineages has led to the identification of several important alterations in high-yielding strains, including the amplification of the penicillin biosynthetic gene cluster, elevated transcription of genes involved in biosynthesis of penicillin and amino acid precursors, and genes encoding microbody proliferation factors. In recent years, successful metabolic engineering and synthetic biology approaches have resulted in the redirection of the penicillin pathway towards the production of cephalosporins. This sets a new direction in industrial antibiotics productions towards more sustainable methods for the fermentative production of unnatural antibiotics and related compounds.