348 research outputs found

    Model for the prediction of the tensile strength and tensile stiffness of knot clusters within structural timber

    Get PDF
    In the present paper, a model for the prediction of the local strength and stiffness properties is developed. Compared to existing models, here the local material properties are described according to their morphological characteristics; i.e. the timber boards are subdivided into sections containing knots (knot sections) and sections without knots (clear wood sections). The strains of the corresponding sections are measured during non-destructive tensile tests using an optical camera device. Based on these measurements the tensile stiffness of each particular section is estimated. For the estimation of the tensile strength, destructive tensile tests are performed. Herewith, the tensile strength of the entire timber board is measured. The strength of the other knot clusters are estimated using censored regression analysis. Taking into account the results of the experimental investigation, material models are developed to predict the tensile strength and the tensile stiffness of knot clusters

    Peptide Immunization Indicates that CD8+ T Cells are the Dominant Effector Cells in Trinitrophenyl-Specific Contact Hypersensitivity

    Get PDF
    The identity of the effector T cell population involved in contact hypersensitivity is still questionable with evidence promoting both CD4+ or CD8+ T cells. Previous experimental studies have relied on the in vivo depletion of T cell subsets using antibody, or the use of knock-out mice with deficiencies in either CD4+ or CD8+ T cell-mediated immunity. To address the role of the class I- and class II-mediated pathways of T cell activation in contact hypersensitivity responses in mice with an intact immune system, we utilized various trinitrophenyl-derivatized peptides, which bind specifically with H-2Kb (major histocompatibility complex class I) or H-2I-Ab (major histocompatibility complex class II). The subcutaneous injection of major histocompatibility complex class II-specific, but not of class I-binding, hapten-derivatized peptides in incomplete Freund's adjuvant induced specific, albeit low, contact hypersensitivity responsiveness to trinitrochlorobenzene. When bone-marrow-derived dendritic cells, however, were pulsed with the same peptides and administered intradermally, the opposite result was observed, namely that the class I binding peptides induced contact hypersensitivity responses similar to that observed after epicutaneous trinitrochlorobenzene application. In contrast, dendritic cells pulsed with major histocompatibility complex class II binding peptides did not reproducibly sensitize for contact hypersensitivity responses. Surprisingly, both immunization protocols efficiently induced CD8+ effector T cells. These results support the notion that CD8+ T cells are the dominant effector population mediating contact hypersensitivity responsiveness and that the CD4+ T cell subset only contributes little if at all

    Disentangling Changes in the Spectral Shape of Chlorophyll Fluorescence : Implications for Remote Sensing of Photosynthesis

    Get PDF
    Novel satellite measurements of solar-induced chlorophyll fluorescence (SIF) can improve our understanding of global photosynthesis; however, little is known about how to interpret the controls on its spectral variability. To address this, we disentangle simultaneous drivers of fluorescence spectra by coupling active and passive fluorescence measurements with photosynthesis. We show empirical and mechanistic evidence for where, why, and to what extent leaf fluorescence spectra change. Three distinct components explain more than 95% of the variance in leaf fluorescence spectra under both steady-state and changing illumination conditions. A single spectral shape of fluorescence explains 84% of the variance across a wide range of species. The magnitude of this shape responds to absorbed light and photosynthetic up/down regulation; meanwhile, chlorophyll concentration and nonphotochemical quenching control 9% and 3% of the remaining spectral variance, respectively. The spectral shape of fluorescence is remarkably stable where most current satellite retrievals occur (far-red, >740nm), and dynamic downregulation of photosynthesis reduces fluorescence magnitude similarly across the 670- to 850-nm range. We conduct an exploratory analysis of hourly red and far-red canopy SIF in soybean, which shows a subtle change in red:far-red fluorescence coincident with photosynthetic downregulation but is overshadowed by longer-term changes in canopy chlorophyll and structure. Based on our leaf and canopy analysis, caution should be taken when attributing large changes in the spectral shape of remotely sensed SIF to plant stress, particularly if data acquisition is temporally sparse. Ultimately, changes in SIF magnitude at wavelengths greater than 740 nm alone may prove sufficient for tracking photosynthetic dynamics. Plain Language Summary Satellite remote sensing provides a global picture of photosynthetic activity-allowing us to see when, where, and how much CO2 plants are assimilating. To do this, satellites measure a small emission of energy from the plants called chlorophyll fluorescence. However, this measurement is typically made across a narrow wavelength range, while the emission spectrum (650-850 nm) is quite dynamic. We show where, why, and to what extent leaf fluorescence spectra change across a diverse range of species and conditions, ultimately informing canopy remote sensing measurements. Results suggest that wavelengths currently used by satellites are stable enough to track the downregulation of photosynthesis resulting from stress, while spectral shape changes respond more strongly to dynamics in canopy structure and chlorophyll concentration.Peer reviewe

    Investigating human audio-visual object perception with a combination of hypothesis-generating and hypothesis-testing fMRI analysis tools

    Get PDF
    Primate multisensory object perception involves distributed brain regions. To investigate the network character of these regions of the human brain, we applied data-driven group spatial independent component analysis (ICA) to a functional magnetic resonance imaging (fMRI) data set acquired during a passive audio-visual (AV) experiment with common object stimuli. We labeled three group-level independent component (IC) maps as auditory (A), visual (V), and AV, based on their spatial layouts and activation time courses. The overlap between these IC maps served as definition of a distributed network of multisensory candidate regions including superior temporal, ventral occipito-temporal, posterior parietal and prefrontal regions. During an independent second fMRI experiment, we explicitly tested their involvement in AV integration. Activations in nine out of these twelve regions met the max-criterion (A < AV > V) for multisensory integration. Comparison of this approach with a general linear model-based region-of-interest definition revealed its complementary value for multisensory neuroimaging. In conclusion, we estimated functional networks of uni- and multisensory functional connectivity from one dataset and validated their functional roles in an independent dataset. These findings demonstrate the particular value of ICA for multisensory neuroimaging research and using independent datasets to test hypotheses generated from a data-driven analysis

    Customizable views on semantically integrated networks for systems biology

    Get PDF
    Motivation: The rise of high-throughput technologies in the post-genomic era has led to the production of large amounts of biological data. Many of these datasets are freely available on the Internet. Making optimal use of these data is a significant challenge for bioinformaticians. Various strategies for integrating data have been proposed to address this challenge. One of the most promising approaches is the development of semantically rich integrated datasets. Although well suited to computational manipulation, such integrated datasets are typically too large and complex for easy visualization and interactive exploration

    Swabian MOSES 2021: An interdisciplinary field campaign for investigating convective storms and their event chains

    Get PDF
    The Neckar Valley and the Swabian Jura in southwest Germany comprise a hotspot for severe convective storms, causing tens of millions of euros in damage each year. Possible reasons for the high frequency of thunderstorms and the associated event chain across compartments were investigated in detail during the hydro-meteorological field campaign Swabian MOSES carried out between May and September 2021. Researchers from various disciplines established more than 25 temporary ground-based stations equipped with state-of-the-art in situ and remote sensing observation systems, such as lidars, dual-polarization X- and C-band Doppler weather radars, radiosondes including stratospheric balloons, an aerosol cloud chamber, masts to measure vertical fluxes, autosamplers for water probes in rivers, and networks of disdrometers, soil moisture, and hail sensors. These fixed-site observations were supplemented by mobile observation systems, such as a research aircraft with scanning Doppler lidar, a cosmic ray neutron sensing rover, and a storm chasing team launching swarmsondes in the vicinity of hailstorms. Seven Intensive Observation Periods (IOPs) were conducted on a total of 21 operating days. An exceptionally high number of convective events, including both unorganized and organized thunderstorms such as multicells or supercells, occurred during the study period. This paper gives an overview of the Swabian MOSES (Modular Observation Solutions for Earth Systems) field campaign, briefly describes the observation strategy, and presents observational highlights for two IOPs

    Monoclonal antibodies to inner ear antigens: II Antigens expressed in sensory cell stereocilia

    Full text link
    To develop biological reagents for investigating structure-function relationships in the organ of Corti, we have raised monoclonal antibodies, (MAb) to inner ear tissues. Our first series of antibodies prepared after intrasplenic immunization of mice with guinea pig tissues, identified antigens restricted to supporting cell structures, but no hair cell specific antibodies were developed [Zajic et al., Hear. Res. 52, 59-72, 1991]. In this report we describe the isolation, binding specificity and initial characterization of the stereocilia-binding monoclonal antibodies, KHRI-4, and KHRI-5. Mice were immunized with avian, amphibian and mammalian sensory hair cell-containing tissues and antibodies were screened for selective binding to cochlear extracts in ELISA. In the inner ear, KHRI-4 and KHRI-5 bind specifically to stereocilia in both avian and mammalian cochlear and vestibular tissue preparations using immunofluorescence and immunoperoxidase assays. In other tissues only certain cells of mesothelial origin, such as smooth muscle in gut and the arteriolar vasculature, were stained by KHRI-4 indicating that the antigenic structure defined by this antibody has limited distribution. KHRI-5 binding could be detected in other tissues only at high antibody concentrations suggesting that the gene product identified by this antibody is also weakly expressed in other cell lineages. Western blot analysis showed that KHRI-4 and -5 detect different protein complexes. KHRI-4 identifies an antigenic structure common to gut, cochlea, vestibular tissue and cultured fibroblasts consisting of a ~ 195 and a 230 kDa heterodimer designated p195/230. KHRI-5 binds to a prominent ~ 200-210 kDa band in Western blots of cochlear tissues, gut and fibroblasts. In immunoprecipitation experiments, KHRI-5 precipitated three proteins of Mr ~ 200-210, 230 and 260 kDa indicating that the ~ 200-210 kDa protein carrying the epitope for this antibody is a member of a heterotrimer complex. Our results show that these protein complexes are structural components of stereocilia and that the same proteins are arrayed in conjunction with the actin stress fibers of cultured mesothelial cells. Thus, they are likely to be important for maintaining the actin structure of stereocilia essential to transduction in sensory hair cells.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/28991/1/0000019.pd

    A Novel Metagenomic Short-Chain Dehydrogenase/Reductase Attenuates Pseudomonas aeruginosa Biofilm Formation and Virulence on Caenorhabditis elegans

    Get PDF
    In Pseudomonas aeruginosa, the expression of a number of virulence factors, as well as biofilm formation, are controlled by quorum sensing (QS). N-Acylhomoserine lactones (AHLs) are an important class of signaling molecules involved in bacterial QS and in many pathogenic bacteria infection and host colonization are AHL-dependent. The AHL signaling molecules are subject to inactivation mainly by hydrolases (Enzyme Commission class number EC 3) (i.e. N-acyl-homoserine lactonases and N-acyl-homoserine-lactone acylases). Only little is known on quorum quenching mechanisms of oxidoreductases (EC 1). Here we report on the identification and structural characterization of the first NADP-dependent short-chain dehydrogenase/reductase (SDR) involved in inactivation of N-(3-oxo-dodecanoyl)-L-homoserine lactone (3-oxo-C12-HSL) and derived from a metagenome library. The corresponding gene was isolated from a soil metagenome and designated bpiB09. Heterologous expression and crystallographic studies established BpiB09 as an NADP-dependent reductase. Although AHLs are probably not the native substrate of this metagenome-derived enzyme, its expression in P. aeruginosa PAO1 resulted in significantly reduced pyocyanin production, decreased motility, poor biofilm formation and absent paralysis of Caenorhabditis elegans. Furthermore, a genome-wide transcriptome study suggested that the level of lasI and rhlI transcription together with 36 well known QS regulated genes was significantly (≥10-fold) affected in P. aeruginosa strains expressing the bpiB09 gene in pBBR1MCS-5. Thus AHL oxidoreductases could be considered as potent tools for the development of quorum quenching strategies
    corecore