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Electronic Supplementary Material 

 

Supplementary Methods 

On the number of components 

The choice of number of components is a complicated issue in ICA analyses. Several 

quantitative solutions have been suggested in the literature, but as Calhoun et al. (2009) 

state in their review, the number of components remains a free parameter in spatial ICA of 

fMRI data. One complication of the quantitative solutions for the optimal number of 

components is that they depend on the kind of algorithm used and how functional data are 

prepared (cf., Calhoun et al. 2001; Beckmann and Smith 2005; Cordes and Nandy 2005). 

Moreover, all currently existing algorithms base their estimate on PCA decompositions (i.e., 

pre-whitened data), whereas ICA components are ultimately estimated using an objective 
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function for statistical independence. Thus, it is very likely that the algorithms may miss-

specify the optimal dimensionality for ICA. Further, the analytical penalty for estimating too 

many components (over-estimation) is relatively limited and can be controlled by examining 

the correlations between the component time courses: If over-estimation results in splitting of 

a source into multiple components, the component time courses should be highly correlated. 

Conversely, with under-estimation, information is simply discarded from the analysis and 

cannot be retrieved. Finally, several authors (e.g., McKeown et al. 1998; Formisano et al. 

2004; Abou-Elseoud et al. 2010) provide intuitive examples of cases in which full 

dimensionality (i.e., number of components equals number of measured volumes) revealed 

spatiotemporal dynamics that were not found with lower dimensionalities. Therefore, the 

existing algorithms by no means provide definitive estimations of ICA dimensionality. Thus, 

rather than true estimates of dimensionality, we regard these methods as quantitative 

heuristics that are at par with other, less complicated methods (e.g., Greicius et al. 2004; van 

de Ven et al. 2008; Abou-Elseoud et al. 2010). 

An alternative heuristic to the number of components problem is to evaluate the 

reliability of decompositions of a particular dimensionality across multiple subjects. Our 

sogICA framework allows for such comparisons (e.g., van de Ven et al. 2008). We 

decomposed the functional time series of the participants of experiment 1 using 30, 35 and 

40 components, and compared the degree of within-cluster spatial similarity (i.e., average 

spatial correlation between cluster members) of clusters of similar functional networks. 

Similarity measures did not differ (P > 0.1). However, we did find that for the 40-component 

decomposition some of the unisensory networks were split into multiple components in 

several participants, suggesting that this order of dimension was prone to over-fitting. 

Therefore, we chose to analyse our data using sICA of 35 components. 

 

Decomposition and Clustering 

Each individual set of volume time series was decomposed using sICA (McKeown et al. 

1998; Calhoun et al. 2001; van de Ven et al. 2004) into 35 spatially independent components 
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and associated activation profiles. SICA was performed with FastICA (Hyvärinen 1999), 

using the deflation mode, which estimates each of the independent components 

successively. Before independent component estimation, the initial dimensions of the data 

were reduced to 35 using principal component analysis. After decomposition the spatial 

components and activation profiles were Z-scored (McKeown et al., 1998). Spatial 

components of all individual datasets were then grouped using a two-level data-driven 

clustering approach (van de Ven et al. 2009), using hierarchical clustering in which spatial 

correlations between component pairs were used as similarity measure (Esposito et al., 

2005). On the first level, spatial components were clustered across the two experimental 

runs within each participant (within-subject clustering). Each experimental run of a participant 

contributed maximally one component to a cluster, yielding 35 clusters of 2 spatial 

components for each participant. Within each cluster the spatial components and associated 

activation profiles were averaged, and the mean cluster maps of each participant served as 

input to the second level (between-subject) clustering. Here, each participant contributed 

maximally one mean map to a second-level cluster, yielding 35 clusters of 10 first-level maps 

each. The resulting second-level (between-subject) clusters were ranked according to 

ascending intra-cluster distances, which is a measure of spatial similarity of cluster members 

(i.e., the cluster with best-matching components is ranked highest). For each between-

subject cluster, a group map of the connectivity modes was generated by calculating a one-

sample t-test statistic for the z-values at each voxel against a mean value of 0 (Esposito et 

al. 2005; van de Ven et al. 2008). The group t-maps were thresholded using the false 

discovery rate (FDR, Genovese et al. 2002; q = 0.05) to correct for multiple comparisons. 

 

 

Selection of unisensory and AV clusters 

The 35 cluster spatial maps were correlated with spatial templates of bilateral auditory 

cortex, primary and extrastriate visual cortex and left and right parietal cortex. Templates 

were derived from independent studies in which the functional time series were decomposed 
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using sICA (van de Ven et al. 2004; 2009). The cluster time courses were correlated with the 

ideal response profiles of unimodal and AV stimulus conditions of the first experiment. The 

ideal response profile was obtained by convolving the experimental design matrix with a 

hemodynamic response function. Clusters were selected according to their maximum spatial 

and temporal correlations. Fig. S1 shows the spatial (rspace) and temporal (rtime) correlations 

for the three selected clusters. Note that the time course of the AV cluster correlated strongly 

with the unisensory and the AV response profile. However, the AV cluster’s spatial map 

correlated only with left and right parietal cortex. 

 

Supplementary Results 

IC clustering 

The group clustering results of the seven highest ranking IC clusters are shown in Fig. S2. 

The dispersion plot shows the intra- and intercluster distances (or dissimilarities) of the first 

seven clusters projected onto a 2-dimensional space using multidimensional scaling. This 

visualization procedure retained the relative distances between cluster members within and 

between clusters (Himberg et al. 2004; Esposito et al. 2005; van de Ven et al. 2008). The 

plot shows that sogICA generated spatially highly consistent clusters, with no cluster 

members of a cluster overlapping with the distribution of other clusters. We also calculated 

overlap maps to inspect the spatial distribution of the proportion of supra-threshold voxel 

values across participants. The overlap maps revealed a strong similarity and spatial 

selectivity between individual maps, which conforms to the results of the dispersion plot 

(right-hand panels of Fig. S2). 

 

GLM analysis using cluster-size threshold for multiple comparison correction 

In this procedure, the statistically uncorrected whole-brain GLM map of Experiment 1 (max-

criterion; P < 0.01) was subjected to cluster–size statistical detection threshold estimation 

(Forman et al. 1995; Goebel et al. 2006), which simulated random activation maps based on 

the intrinsic smoothness of the source statistical map. This procedure was repeated 1000 
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times (Monte Carlo simulations). Each random simulation was then thresholded at the initial 

voxel threshold, and surviving voxel clusters were tabulated. Finally, the tabulated voxel 

cluster sizes were thresholded at a false-positive rate of 0.05. The minimum cluster size was 

used to correct the initial statistical map for multiple comparisons at the voxel cluster-level 

(1000 iterations). We revealed three regions (as shown in Fig. S3) which were located in 

right PFC, right pSTS, and left LOC regions. The first two regions showed considerable 

overlap with corresponding ROIs defined using ICA. During experiment 2 only the left LOC, 

but none of the other GLM-based ROIs met the criterion for AV convergence (AV > max[A, 

V]; p<0.05; Fig. S3). 
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Supplementary Figures 

 

Figure S1. Spatial and temporal correlations for cluster selection. 

Lines depict the absolute correlation coefficients between the cluster maps and spatial 

templates (solid; rspace) and between the cluster time courses and response profiles (broken; 

rtime). The bottom panel shows two sets of spatial correlations, between maps and a left 

(right) parietal template presented in black (red). For unisensory spatial templates the cluster 

with highest spatial correlation also correlated strongest with the unisensory response profile. 

For the parietal template only one cluster correlated highest (i.e., after the unisensory 

auditory and visual components) with the AV temporal profiles. 
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Figure S2. Independent component (IC) cluster distribution. 

Dissimilarity measures are plotted for those seven IC clusters that showed the lowest mean 

intra-cluster distances (i.e., highest mean intra-cluster similarity). Left: 2-dimensional 

dispersion plot of intra-cluster dissimilarities; 2-D projection of the dissimilarities were 

estimated using multidimensional scaling. For the seven clusters, dispersion is dense, which 

suggests a high degree of similarity (i.e., very low dissimilarity). Clusters 2, 4 and 7 were 

selected as uni- and multisensory spatial modes (see text), cluster 1 reflected an EPI-related 

artifact (see Fig. S4). For details of plotting dissimilarity measures of sogICA, see previous 

publications (Esposito et al. 2005; van de Ven et al. 2008; Wibral 2007). Right: transversal 

view of the degree of overlap of the 10 constituent subject-level IC maps of each IC cluster of 

interest. 
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Figure S3. Comparison with GLM-based definition of AV integration regions. 

AV convergence regions (AV > max[A, V]) were also defined on the basis of a conventional 

whole-brain GLM of experiment 1 (three regions surpassed the voxel cluster threshold). 

Graphs on the right show the respective functional activation profiles of these ROIs during 

experiment 2 by providing the GLM beta estimates for each experimental condition. The 

asterisk indicates the significance level of the max-contrast (*<0.05). 
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Figure S4. Artifactual independent component cluster. 

We found between-subject clusters representing machine-related artefacts and clusters 

representing neurophysiologic activity of interest, similar to other ICA decompositions 

(McKeown et al. 1998; van de Ven et al. 2004; Esposito et al. 2005). The cluster with the 

highest intra-cluster similarity was associated with strong artifactual activation of a large 

contingent of voxels during all but the first and last volumes of their time course, most likely 

related to shim or B0 field effects. Here we show the cluster map and time course for the 

artifactual IC cluster with the highest intra-cluster similarity. A similar data-driven result was 

reported previously (Esposito et al. 2005). For an overview of possible artifactual sources 

see Wibral 2007. For explanatory legend of experimental protocol, see main text. 
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