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a b s t r a c t

Two general approaches may be followed for the development of a fire risk model: statistical models
based on observed fire losses can support simple cost-benefit studies but are usually not detailed enough
for engineering decision-making. Engineering models, on the other hand, require many assumptions that
may result in a biased risk assessment. In two related papers we show how engineering and data-driven
modelling can be combined by developing generic risk models that are calibrated to statistical data on
observed fire events. The focus of the present paper is on the calibration procedure. A framework is
developed that is able to deal with data collection in non-homogeneous portfolios of buildings. Also
incomplete data sets containing only little information on each fire event can be used for model cali-
bration. To illustrate the capabilities of the proposed framework, it is applied to the calibration of a
generic fire risk model for single family houses to Swiss insurance data. The example demonstrates that
the bias in the risk estimation can be strongly reduced by model calibration.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Decisions regarding investments into fire safety generally have
to be made under uncertainty. This stems both from the inherent
randomness of building fire events and from the fact that we are
not able to fully understand and model the underlying phenom-
ena. Probabilistic approaches for fire risk assessment allow the
consistent consideration of both types of uncertainties. The overall
goal of quantitative fire risk assessment is to support decisions on
risk reduction measures by estimating their impact on the ex-
pected consequences (e.g. financial losses or human fatalities) of
all possible fire scenarios. A basic requirement for a risk model to
be used for decision-making is that the risk has to be assessed as a
function of the safety measures installed; the model has to include
the decision variables. Another important requirement is that the
risk-relevant characteristics of the building or group of buildings
to be modelled are accounted for. Finally, the model should assess
the risk as accurately as possible.

1.1. Engineering and data-based fire risk assessment

Fire risk models can be based on two sources of information:
statistical data and engineering models. Empirical models as de-
scribed e.g. by Ramachandran [1] or Tillander [2] use simple
parametric functions to model fire occurrence and the probability
distribution of financial or human consequences given a fire event.
The models are fitted to observed data and therefore may be ex-
pected to provide a fairly unbiased estimate of the observed fire
risk. However, the approach can only provide average risk esti-
mates, as the data must be collected for a more or less homo-
geneous group of buildings to obtain a sample size that is large
enough for statistical analysis. Another drawback is that the use of
data-based risk models for decision-making will always be re-
stricted by the information content of the data available to the
modeller; information on the relevant decision variables is often
missing.

Engineering risk models, on the other hand, are based on an
understanding of the physical processes leading to loss of property
and life. For the purpose of this paper, an engineering model is
defined very broadly as any approach that breaks down the pro-
blem of fire risk assessment into several components which are
addressed by a number of interacting submodels that represent
physical phenomena, such as e.g. fire spread to different rooms,
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fire brigade response or occupant egress. Introductions to prob-
abilistic fire risk assessment have been provided e.g. by Hasofer
et al. [3], Yung [4], Magnusson et al. [5] or Ramachandran and
Charters [6], to mention just a few. The methods have been ap-
plied for the development of comprehensive risk models with
different focus, e.g. CESARE-RISK [7], FiRECAM [8], CRISP II [9],
CUrisk [10] and B-Risk [11].

By establishing the relationship between fire risk and clearly
defined physical variables or phenomena, engineering models of-
fer a high potential for decision-making, e.g. during the design of
buildings for fire safety. The methods do however always include a
certain bias, i.e. a systematic error due to assumptions made in the
probabilistic modelling, e.g. the probability distribution functions
of basic input variables and simplified methods used to model the
risk.

When comparing different fire safety designs (e.g. for demon-
strating code equivalency, Beck [7] or He and Grubits [12]), fire
safety engineers often use so-called “conservative” assumptions
leading to a presumably safe, but unpredictable bias in the final
outcome of the model. This is already problematic for a relative
risk assessment, as the risk comparison will only be meaningful if
the bias is the same for all options that shall be regarded. A
comparison between the uncertain benefits of a safety measure
and its (usually certain) costs does, however, require an absolute
risk assessment. In this case, the model clearly has to assess the
expected loss of property or life with as little bias as possible.

The bias, or systematic error, of a risk model may be understood
as the difference between the estimated risk measure (e.g. ex-
pected consequences, exceedance probabilities for large losses)
and its true value, which is generally unknown but may be ap-
proximated by statistical analysis if the data sample is large en-
ough. This implies that the bias can be reduced by calibrating a fire
risk model to statistical data.

Model calibration deals with an optimal choice of model para-
meters in order to represent the observations as best as possible.
Ideally, a calibration approach should not only provide a point
estimate for the “best-fit” parameters, but also some information
on the uncertainty of the calibrated parameters. This may be
achieved by using statistical methods such as the method of
Maximum Likelihood (e.g. Rychlik and Rydén [13]) or a Bayesian
approach to parameter estimation (e.g. Gelman et al. [14]).

If the parameters are associated with physical quantities, model
calibration is also known as inverse modelling. It has recently been
applied to estimate the most likely model input of fire models (e.g.
heat release rate or fire growth rate) from measured output
quantities such as e.g. temperature development or heat flux va-
lues. This approach can be applied either after a fire has occurred
(e.g. for fire investigation, Overholt et al. [15]) or for real-time
decision-making during the course of a fire event (Koo et al. [16],

Jahn et al. [17]).
Model calibration with fire loss data collected for a whole

group (or portfolio) of buildings by e.g. fire brigades or insurance
companies so far has been limited to simple statistical models like
the data-based fire risk models mentioned above. Using observed
loss data for the calibration of engineering fire risk models can be
expected to provide valuable input for an improved prediction
before a fire occurs, e.g. for evaluating the effect of different fire
safety measures. The aim of the present paper and a companion
paper by De Sanctis et al. [18] is to show how this may be realized
in practise.

1.2. Outline of the calibration problem

The general idea of the approach followed in the two related
papers is illustrated in Fig. 1. First we develop a risk model esti-
mating the random model output Y (e.g. the financial loss due to a
fire) as a function of some model input X. The model can be ad-
justed to observations of X and Y made in real fire events by fitting
a set of calibration parameters Θ to statistical data. The develop-
ment of such a fire risk model, i.e. a model that may be calibrated,
is discussed in De Sanctis et al. [18]. The modelling strategy chosen
is based on the principles of generic risk assessment described in
JCSS [19]. The consequences of an exposure event (e.g. fire igni-
tion) are modelled using a hierarchical approach, with a vulner-
ability model estimating the direct effects of the exposure and a
robustness model assessing the indirect consequences, see Fig. 1.

Nomenclature

General notation

X x, Random variable, realisation
X, x Vector of RV, realisations
x̂ Data set with observations of X
E .[ ] Expectation operator
Var .[ ] Variance operator
Cov .[ ] Covariance operator
f xX ( ) Probability density function for X
F xX ( ) Cumulative distribution function
f x yX Y ( ) Conditional distribution of X given Y
p xX ( ) Discrete probability density function

P A( ) Probability of an event A

Variable definitions

X,x, x̂ Model input risk indicators
Y,y, ŷ Model output risk indicators
ẑ Risk indicators contained in the data set (different

from model input)
,Θ θ Model calibration parameters

L l, Likelihood function, log-likelihood
θ* Maximum Likelihood parameters
CΘ Covariance matrix for Θ
H Fisher information matrix

Generic fire risk model
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Fig. 1. Calibration of a generic fire risk model to data.
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The focus of the present paper is on the calibration of a generic
fire risk model to statistical data from real fire events; the model
itself is treated mainly as a “black box” estimating the risk for each
building as a function of the model input and the calibration
parameters. The calibration of the model parameters Θ requires a
data set with sufficient sample size containing information on
both the model input X and the model output Y; in this setting the
parameters Θ are the only unknowns. Another important re-
quirement is that the data has not been extensively used during
the development of the risk model, i.e. that the data is an in-
dependent sample providing new information.

Possible data sources for the calibration of building fire risk
models are fire brigade reports or data collected by fire insurance
companies. Two main problems have to be solved when using
such data for model calibration:

Data collection at portfolio level: the data is typically collected in
a non-homogeneous portfolio (group) of buildings, with a variety
of building-specific factors influencing the risk.

Incomplete data sets: the data does not necessarily contain all
information relevant to an engineering approach for fire risk
assessment.

The first problem is well-known to anybody analysing fire loss
data with research questions regarding e.g. the effectiveness of fire
safety measures (Thomas [20]). In contrast to lab experiments
where it is possible to vary only one factor at once, the analysis of
data from real fire events is more complex due to the interaction of
different variables. When calibrating an engineering model to real-
world data, this problem can be reduced by explicitly modelling
the effect of different building characteristics on the fire risk. This
is achieved by following the generic modelling approach described
in JCSS [19]. A generic fire risk model estimates the risk based on a
set of risk indicators describing the characteristics of the building
(e.g. floor area, number of rooms) and the fire event (e.g. room of
fire ignition, fire brigade intervention time). The advantage of this
approach is that the same model can be applied to all buildings
within a specific class the model has been developed for, which
allows for an estimation of the model calibration parameters based
on data collected at portfolio level. Also the effect of fire safety
measures can be assessed for a portfolio of buildings to support
decisions that have to be made at portfolio level (e.g. code-making
decisions that generally affect a whole class of buildings).

Often, the data available for calibration is incomplete, which
leads to the second problem mentioned above: the risk indicators
used by the engineering model may not be recorded in the data
set. As a short-term solution to this problem, the required risk
indicators can be estimated based on the data and other sources of
information. However, such an approach introduces additional
uncertainties into the calibration procedure, as the model input
and/or output (X and Y in Fig. 1) are not known with certainty. A
long-term strategy should therefore be to improve the data base
by collecting the information required for an engineering model-
ling approach. By identifying observable indicators relevant for fire
risk assessment, the development of generic fire risk models helps
to formulate the requirements for future data collection. With an
improved data base, the models can be further updated and
developed.

Data on observed fire events may also be used to assess the
quality of an engineering model. Here, the goal is to judge whether
the model can be used to predict the behaviour in real fires after
its calibration to statistical data. The process of model calibration
and model validation can help to find inconsistencies in the model
structure, for example if the model is not able to represent the
observed losses in different groups of buildings, e.g. small and
large buildings. While this may give helpful hints for improving
the model, it is clear that a statistical approach like the one de-
scribed in this paper always has to be coupled with a thorough

understanding of the underlying physical processes.
In the present paper we show how a calibration procedure may

be formulated that is able to deal with the two problems of data
collection on portfolio level and incomplete data sets discussed
above. The general framework is presented in Section 2. The ca-
libration procedure is then applied to a generic model for fire risk
assessment in single family houses described in the companion
paper by De Sanctis et al. [18]. The idea is to start with a group of
buildings where large amounts of data are available for exploring
the possibilities of calibrating a fire risk model to real-world data.
Section 3 contains a short introduction to the model and the data
used for calibration, a discussion of the calibration results and
some remarks on model validation. The paper ends with a short
summary and conclusion in Section 4.

2. Framework for the calibration of an engineering fire risk
model to statistical data

2.1. Calibration with data from non-homogeneous building
portfolios

In a single building, fire is a rare event, but information on a
large number of fire events in building portfolios is provided by
e.g. fire insurance statistics or fire brigade reports. When using
such data for model calibration, one has to bear in mind that
different building characteristics may have an influence on the
outcome of the fire. In the following, it will be discussed how a
generic fire risk model can be calibrated to statistical data on fire
events collected in a non-homogeneous portfolio of buildings.

2.1.1. Generic fire risk modelling and calibration
The aim of generic fire risk modelling is to estimate the risk

based on a set of indicators describing the system (e.g. the building
or a building fire event). A risk indicator may be understood as any
measurable or observable characteristic of a system or its com-
ponents containing information on the risk (JCSS [19]). In the case
of building fires, risk indicators may provide information on the
characteristics of the building (e.g. floor area, number of rooms)
and/or the fire event (e.g. room of fire ignition, fire brigade in-
tervention time), see De Sanctis et al. [18]. The model output
furthermore depends on a set of model parameters, which in
contrast to the risk indicators are not observable. Model para-
meters can be defined based on engineering knowledge or esti-
mated from statistical data during the process of model calibra-
tion. A simple example of a model parameter is the fire occurrence
rate which cannot be directly observed but only estimated from
statistical data.

The principles of generic fire risk modelling are described more
in detail in De Sanctis et al. [18], [21]. For the calibration procedure
discussed in this paper, it is sufficient to look at a generic model as
a black box: for a given set of calibration parameters and a certain
model input (e.g. a set of building-specific risk indicators), the
model provides the probability distribution of the model output
(e.g. the fire loss). With data containing evidence on both model
input and model output in a non-homogeneous portfolio of
buildings, it is possible to calibrate the model at portfolio level. In
doing so, the engineering knowledge used to build the generic fire
risk model is combined with information from observed fire
events and the bias introduced by assumptions made during the
modelling process is minimised.

2.1.2. Calibration based on the Maximum Likelihood Method
As a starting point for formulating the calibration procedure we

assume that there exists a generic probabilistic model assessing
the distribution of the randommodel output Y conditional on a set
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of risk indicators X x= (the model input) and the calibration
parameters Θ θ= (bold letters denote vectors, upper case for
random variables and lower case for realisations of random vari-
ables). Treating the model as a black box, it can be expressed as a
conditional probability density function f y x,Y X, θ( )Θ . We further
assume that the data set used for calibration contains complete
information on the model output and all risk indicators in n in-
dependent fire events and that it has not been used during model
development. The observations are stored in a matrix

⎡⎣ ⎤⎦x x , ... , xn1
^ ^ ^=

⊤
for the model input and a matrix ⎡⎣ ⎤⎦y y , ... , yn1

^ ^ ^=
⊤

for the model output. During the calibration of the model to sta-

tistical data, the goal is to find the parameters θ* leading to the
best representation of the observations stored in ŷ and x̂ by the
model.

When applying a generic model at portfolio level, the model
output for each building will depend on the building-specific risk
indicators (the model input) and on the calibration parameters,
which are assumed to be the same for all buildings. A simple ca-
libration procedure that is able to deal with data from non-
homogeneous portfolios can be formulated based on the Max-
imum Likelihood Method (see e.g. Rychlik and Rydén [13] for an
introduction to this method). The idea of this method is to
find the parameters of a probabilistic model that maximise the
“likelihood” of the observations as evaluated by the model. Sta-
tistical data on observed fire events typically contain only one
observation per building. Therefore, the likelihood has to be
evaluated at portfolio level. When following a generic modelling
strategy, this is not problematic, because the same model can be
applied to a variety of buildings or fire events; the differences
between the individual observations are captured by the risk in-
dicators xî .

The likelihood L and log-likelihood l are defined as follows:

L f

l f

y, x y x ,

y, x ln y x ,
1

i

n

i i

i

n

i i

1
Y X ,

1
Y X ,

i i

i i( )
( ) ( )
( ) ( )

∏

∑

θ ^ ^ ^ ^ θ

θ ^ ^ ^ ^ θ

=

=
( )

Θ

Θ

=

=

The Maximum Likelihood parameters θ* are determined by
maximising the likelihood L or, equivalently, by minimising the
negative log-likelihood l− :

lmin y, x 2( )( )θ θ ^ ^* = − ( )θ

A nice property of the Maximum Likelihood approach is that it
provides not only a point estimate for the calibration parameters
but also their statistical uncertainty. If the data set used for cali-
bration is sufficiently large, it may be assumed that the uncertain
parameters Θ are asymptotically normally distributed. Their ex-

pected value is the Maximum Likelihood estimate, i.e. E Θ θ[ ] = *.
The covariance matrix CΘ of the parameters is determined as the
inverse of the (observed) Fisher information matrix, which is de-
fined as the negative Hessian matrix H of the log-likelihood
function evaluated at the Maximum Likelihood estimate. For the
example of two calibration parameters, this is expressed as fol-
lows:

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎧

⎨

⎪⎪⎪⎪

⎩

⎪⎪⎪⎪

⎡

⎣

⎢⎢⎢⎢

⎤

⎦
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⎫

⎬
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⎭
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Var Cov ,
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H

l l

l l
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1
2

2 1

2

1 2

2

1 2

2

2 2 1 1

2 2

1
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[ ] [ ]

( )

*
*
*

θ θ θ

θ θ θ
= = − = −

θ θ θ

θ θ θ θ θ

θ θ

Θ
θ θ=

−
∂

∂

∂
∂ ∂

∂
∂ ∂

∂

∂ =

=

−

For practical applications, the Maximum Likelihood estimation

can be performed using a numerical routine to solve Eq. (2). The
Hessian matrix is then typically determined as a by-product of the
optimisation.

It should be noted that there is one implicit assumption of the
Maximum Likelihood calibration which leads to a small incon-
sistency in the quantification of statistical uncertainty: it is as-
sumed that the (unknown) true values of the model parameters Θ
are the same for all buildings or fire events. As a result, also the
statistical uncertainty is assumed to be the same (and to have the
same realisation) for all individual objects. This is not necessarily
realistic when applying the model to a non-homogeneous port-
folio of buildings. However, the simplification only affects the
variance, not the mean value of the model output. Therefore, the
framework is already applicable to many practical situations
where a risk model shall be used only to assess expected values,
e.g. the expected loss in a building or a portfolio of buildings. It
should be noted that the abovementioned assumption only relates
to the variability of the calibration parameters Θ. A large share of
the population variability is explicitly accounted for by modelling
the fire risk for each building as a function of the building-specific
risk indicators X.

2.2. Calibration with incomplete fire loss data

In the previous section, it was assumed that the data used for
calibration contains complete information on a set of risk in-
dicators describing the input X and output Y of the engineering
model. With real data sets, the situation is often less favourable. In
the following, we discuss how a calibration can be performed with
a data set containing only little information on the buildings and/
or fire events. Also the situation where information is available
only for “large” fires is shortly discussed.

2.2.1. Missing information on the risk indicators used by the model
Model calibration becomes very difficult or even impossible if

the data contains no information at all on the specific conditions
under which the observed fire losses occurred. However, in prac-
tise fire loss data typically provide some basic information on the
buildings and/or the fire events, although not necessarily on the
risk indicators used as a model input. Such information allows at
least for a rough estimation of the risk indicators needed during
the calibration. To give an example, fire insurance data may not
contain information on the building's floor area, which is a basic
input variable for most engineering approaches to fire risk as-
sessment. However, for a given occupancy class, the floor area is
generally correlated with the building's monetary (or insured)
value. By making use of such correlations, the calibration proce-
dure described in Section 2.1 can still be applied, but the un-
certainty in the estimation of the risk indicators (e.g. floor area)
from the information contained in the data (e.g. insured value) has
to be quantified.

Fig. 2 illustrates the calibration procedure for data sets with
limited information content. The risk indicators used as model
input (vector X) are estimated from the available information
(input data, vector ẑ) using probabilistic or, if possible, determi-
nistic assumptions. If necessary, a similar approach can be fol-
lowed on the model output side (Here it is assumed that the data
set ŷ contains the same variable as Y).

Instead of evidence from the data, an uncertain estimate of the
model input now enters the calibration. Accordingly, the observed
risk indicators xî in the likelihood formulation (Eq. (1)) are re-
placed by a random vector Xi . The distribution of Xi is specified
conditional on a vector zî containing the information provided in
the data set. The assumptions on the model input side are ex-
pressed by a conditional probability density function f x zX Z ( ). In
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the example mentioned above, the input data zî would be the
known insured value of the building i, the model input Xi would
be its floor area and the probability distribution f x zX Z ( ) could be
constructed e.g. based on some knowledge on the range of typical
prices per square metre floor area.

The log-likelihood can be reformulated based on the total
probability theorem:

⎧⎨⎩
⎫⎬⎭l f f dy, z ln y x , x z x

4i

n

D i i i i i
1

Y X , X Zi i i i
X

( ) ( )( )∫∑θ ^ ^ ^ θ ^= ⋅
( )

Θ
=

Where DX is the domain of X. From a computational point of
view, the likelihood formulation in Eq. (4) is highly inconvenient:
due to the uncertainty in X, the number of model evaluations per
entry in the data set is, at least in theory, infinite. For practical
applications, the probability density function f x zX Z ( ) can however
be discretized and limited to a reasonable range. The level of
discretization should reflect the uncertainty inherent in the dis-
tribution of the risk indicators, a rough discretization being ap-
propriate for variables with a high degree of uncertainty. With a
discrete probability mass function p x zX Z ( ), the log-likelihood is
expressed as:

⎪ ⎪
⎪ ⎪⎧
⎨
⎩

⎫
⎬
⎭

l f py, z ln y x , x z
5i

n

j

k

i ij ij i
1 1

Y X , X Z

i

i i i i( ) ( )( )∑ ∑θ ^ ^ ^ θ ^= ⋅
( )

Θ
= =

Here, ki refers to the number of different model input combina-
tions (possible realisations of the vector Xi ) encompassed by the

discrete probability mass function p x zi iX Z ( )^ for the data set entry

zî . It depends on the number of variables in X and on the level of
discretization used to define p x zX Z ( ).

The capabilities of the calibration approach for incomplete data
sets are obviously limited by the information content of the data.
Nevertheless, the calibration of a risk model can still be valuable
even if the data base is very poor. Also a rough calibration may
help to discover inconsistencies in the engineering model, e.g. if it
is not able to reproduce the observed fire and loss characteristics
in different groups of buildings. Finally, the lessons learnt during
the calibration of a fire risk model can help to formulate the re-
quirements for future data collection.

2.2.2. Calibration with data sets limited to large fire events
The discussion above was focussed on the problem of limited

information content of the data used for calibration. Another
problem typical for fire loss data is that information on small fire

events is missing, e.g. on those fires that are not reported to the
fire brigade or insurance company. This situation can, however,
easily be handled by a conditional Maximum Likelihood approach.
The calibration is then still based on the likelihood formulation in
Eqs. (1) or (5), but the (unconditional) distribution of the model
output, f y x,Y X, θ( )Θ , is replaced by a distribution conditional on the
event determining whether the fire is included in the data base. A
simple example is the case of insurance data containing only los-
ses larger than a certain excess (deductible) y0. The conditional

distribution f y Y yx, ,Y Y yX, , 00 ( )θ >Θ > is in this case derived from

f y x,Y X, θ( )Θ by truncation at y0.

3. Calibration of a fire risk model for single family houses to
Swiss insurance data

3.1. Short introduction to the engineering risk model

In the following, the calibration procedure is applied for the
calibration of a simple fire risk model to data from real fire events.
The model used for testing our approach is a generic fire risk
model for single family houses. This example was chosen because
it deals with a well-defined group of buildings where large
amounts of data are available for calibration. The model estimates
the probability distribution of the financial loss due to a fire for a
given set of building-specific risk indicators. It may be used e.g. in
an insurance context or for the economic evaluation of code-
making decisions from a societal point of view (Fischer [22]). Loss
of life and injuries are not within the scope of the model. The
monetary losses refer to damages at the building structure only.
Loss of contents and consequential losses are excluded for con-
sistency with the data set used for calibration (see Section 3.2).

The model is described in detail in a companion paper focusing
on the development of a generic fire risk model which facilitates
calibration, see De Sanctis et al. [18]. Herein, only a short in-
troduction to the model is provided for the convenience of the
reader.

In the generic risk model, each house is described by a set of
building-specific risk indicators listed in Table 1. The table also
contains the definition of some fire-specific risk indicators and the
model calibration parameters. For a complete list of all indicators
used by the model see De Sanctis et al. [18].

An overview on the model structure can be found in Fig. 3. The
model consists of several sub-models, each of which will be
shortly described in the following.

3.1.1. Ignition model (Exposure)
The focus of the present paper is on the calibration of a model

for the fire risk conditional on a fire. If the goal is to assess yearly
risk, one has to multiply with the yearly rate of fire occurrence.
Both models (fire occurrence and consequences given fire)
have to use the same definition of a fire event. The ignition model
we use determines the rate of fire occurrence based on a “power
law” function of the insured value in CHF. The parameters were
fitted to Swiss insurance data for residential buildings with an
insured value below 1Mio. CHF, see Fischer et al. [23]. “Fire oc-
currence” implies that the fire has been reported to the insurance
company. The same data is used to calibrate the loss model, see
Section 3.2.

3.1.2. Minor loss model (Vulnerability)
The analysis of fire insurance statistics shows that the sum of

fire losses is dominated by large losses, see e.g. Fontana et al. [24].
For the single family house model this means that small losses, e.g.
those resulting from fires confined to the room of fire origin, are of

Probabilistic modeling of risk indicators based on data 
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Fig. 2. Calibration with data containing only limited information on the risk in-
dicators used by the model.
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minor importance for the expected loss. Therefore, these “minor
losses” are modelled based on a simplified statistical approach,
with engineering modelling focusing on the tail of the loss dis-
tribution, see Fig. 3. For the minor loss model f aA

S
d Sd ( )θ we as-

sume a (shifted) log-lognormal distribution for the fire spread area
Ad . The distribution is independent of the building-specific risk
indicators and used only for small losses confined to the room of
fire origin (a ad 0≤ ). The distribution parameters ,S λ ζθ = [ ]⊤ (mean
and standard deviation of the log-log fire spread area) are esti-
mated from the data, while the shift is fixed and introduced only
to ensure positive values in the logarithm. The probability mass in
the tail of the loss distribution is redistributed according to an
engineering model, the “major loss model”. The minor loss model
here only provides the probability of fire spread beyond the room
of fire origin:

P A a F a1 6d A
S

S0 0d ( )( ) θ> = − ( )

3.1.3. Major loss model (Robustness)
The major loss model becomes relevant if the fire has spread

beyond the room of fire origin (a ad 0> ). The conditional density
function f a a ax, ,A

L
d L d 0d ( )θ > is derived from an engineering

model that is composed of a fire spread model and a fire brigade
model. The calibration parameters ,L ψ κθ = [ ]⊤ are related to these
two sub-models.

The fire spread model describes the development of the area
damaged Ad as a function of time conditional on the risk indicators
a a n n, , ,tot max R C[ ]⊤ (see Table 1). The model is modified by the “fire
spread coefficient” ψ . This parameter describes how well the re-
ference case ( 1ψ = ) used during model development represents
reality. For higher ψ , the fire develops faster and vice versa.

The fire brigade model is based on a simple time-line approach:
first, the starting time of fire brigade actions is defined as a ran-
dom variable. Next, the average time needed to extinguish or
confine the fire (“control time”) is modelled as a “power law”

function of the area damaged at the starting time, which is esti-
mated using the fire spread model mentioned above. The ex-
ponent defining the shape of this control time model is the second
calibration parameter κ , with 1.0κ = denoting a linear relationship
between the area damaged and the control. An initial estimate for
this parameter, 0.52κ = , was derived based on foreign fire brigade
statistics. Finally, the area damaged Ad at the end of the fire bri-
gade actions is again determined based on the fire spread model.

An effect of the engineering approach developed for the major
loss model is that the upper tail of the damage size distribution is
not explained by the log-lognormal distribution chosen for the
minor loss model anymore. In addition, it should be noted that in
contrast to the simplified minor loss model, the major loss model
f a a ax, ,A

L
d L d 0d ( )θ > is conditional on the building-specific risk

indicators summarised in x (see Table 1) and thus specific to each
building evaluated by the risk model.

3.1.4. Financial loss model
Both the minor and the major loss model are defined in terms

of the “fire spread area” Ad , which should be understood mainly as
a proxy for the monetary fire loss, see De Sanctis et al. [18]. For the
conversion to financial losses it is assumed that the ratio between
the monetary loss C and the insured value V is the same as the
ratio between the area damaged Ad and the total floor area Atot , i.e.
C V A A/d tot= ⋅ .

3.2. Description of the data set used for calibration

For the calibration of the risk model described in Section 3.1 we
use fire loss data provided by AGV, the public building insurance
company of Aargau (a canton/state of Switzerland). The loss data
includes also small losses, as no excess (deductible) is borne by the
policy holders. Only the building structure is insured by AGV;
losses to contents and consequential losses are insured on the
private market. The data provides information on all claims due to
fires in single family houses (detached, semi-detached and row
houses) submitted to AGV from 1999 to 2008. The resulting data
set contains the following information on n 1996= fire events: the
building's insured value, its year of construction, its volume in m3

and the fire loss amount.
A comparison with the risk indicators used by the model (Ta-

ble 1) reveals that only for the insured value V and the financial
loss C information is readily available. The missing building-spe-
cific risk indicators were estimated based on the evidence pro-
vided by the data. This was done partly using deterministic as-
sumptions as in the case of the total floor area Atot which was
calculated from the building's volume assuming a room height of
2.7 m. For the remaining indicators NR , NC and Amax , we derived

Table 1
Risk indicators used as input for the fire risk model and definition of the calibration
parameters (upper case for random variables, lower case for realisations).

Building-specific risk indicators (model input) X x

Total building floor area [m2] Atot atot

Floor area of largest room [m2] Amax amax

Number of rooms [dimensionless] NR nR

Number of connections between rooms [dimentionless] NC nC

Insured value [CHF] V v
Fire-specific risk indicators

Floor area of room of fire ignition [m2] A0 a0

Area of fire spread [m2] Ad ad

Model output Y y
Financial loss (building structure) [CHF] C c

Calibration parameters Θ θ
Minor loss model parameters ,S Λ ΖΘ = [ ]⊤ SΘ Sθ

Mean of log-log fire spread area Ad Λ λ
Std. dev. of log-log fire spread area Ad Ζ ζ

Major loss model parameters ,L Ψ ΚΘ = [ ]⊤ LΘ Lθ

“Fire spread coefficient” Ψ ψ
“Control time exponent” Κ κ
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Fig. 3. Overview on the components of the engineering model described in De
Sanctis et al. [18].
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probability distribution functions using a two-step procedure: first
we estimated the probability distribution function of the number
of rooms NR based on the building's volume and the year of con-
struction. For this task, we used statistical information published
by the Swiss Federal Statistical Office [25]. For the number of
connections between rooms, NC , and the size of the largest room
relative to the total floor area, A A/max tot , we assumed probability
distribution functions conditional on the number of rooms NR . No
statistical information could be found on these two risk indicators.
In order to come to reasonable estimates, we conducted a survey
of typical single family house layouts found on the online real
estate portal homegate (www.homegate.ch). These estimates can
be expected to be very uncertain. An illustration of the procedure
used to estimate the building-specific risk indicators is found in
Fig. 4.

The limitations of the data set used for calibration are obvious:
almost all building-specific risk indicators in Table 1 had to be
estimated based on assumptions and information on fire devel-
opment, fire brigade actions and risk reduction measures is
missing completely. Another factor is the small number of large
losses (only 10 out of 1996 claims are larger than 500,000 CHF),
especially for the calibration of model components that mainly
influence the tail of the loss size probability distribution. The
amount of data can be increased e.g. by extending the data set to a
longer time period. Improving the quality of the data requires
more effort, but could be aimed at in the future: all risk indicators
listed in Table 1 are, at least in principle, quantifiable.

The companion paper by De Sanctis et al. [18] also discusses a
number of fire specific risk indicators, which are also observable in
the case of a fire event, e.g. the floor area of the room of fire origin
or the fire brigade intervention time. For model calibration with
the data set described above, these risk indicators have been
modelled as random variables within the fire risk model and are
therefore not part of the model input X. Note that the same ap-
proach is required for risk assessment prior to the occurrence of a
fire, where information on the fire-specific risk indicators is also
not available.

A full list of all risk indicators used by the model is provided in
Table 1 of De Sanctis et al. [18]. This list can be used as a starting
point for defining future data collection requirements. As a mini-
mum, the data should contain full information on the five build-
ing-specific risk indicators defined as model input for the present
paper. In addition, also information on the fire event should be
collected, including e.g. the floor area of the room of fire origin, the
fire brigade intervention time and the final fire spread area or the
number of rooms affected by the fire.

3.3. Application of the calibration procedure

In the following, it is shown how the single family house model
was calibrated to the observed loss data. As discussed in Section
3.1, the model is composed of a simple minor loss model for fires
confined to the room of fire origin (small losses) and a more
complex engineering model for major losses. The respective
calibration parameters are ,S λ ζθ = [ ]⊤ for the minor loss model
and ,L ψ κθ = [ ]⊤ for the major loss model. The characteristics of
each building i are described by the random vector

⎡⎣ ⎤⎦A A N N VX , , , ,i tot i max i R i C i i, , , ,= ⊤ (see Table 1 for variable definition).
As the data set contains no evidence on most of these building-
specific risk indicators (see Section 3.2), the model input is gen-
erated by a discrete probability distribution p x zX Z ( ) for the ran-

dom vector Xi conditional on the information available in the data

set. The data input is represented by a vector zî containing the
insured value, the volume and the year of construction for each
individual building. The model output is defined as the financial
loss in case of fire, i.e. Y Ci i= .

The incomplete data set requires estimating the likelihood
based on Eq. (5), which is computationally expensive. The number
of model evaluations ki per observation could be reduced by
assuming that combinations of risk indicators with

p x z 10ij iX Z
6

i i ( )^ < − are negligible. Further reductions in computa-

tion time were achieved by estimating the calibration parameters

Sθ of the minor loss model separately from the parameters Lθ of
the major loss model: first the minor loss model is fitted to the
whole data set and then the calibration of the engineering model
is performed with fixed minor loss model parameters:

lmin y, z,
7L L S

L
( )( )θ θ ^ ^ θ= −

( )θ
* *

Eq. (7) was solved using the interior-point algorithm im-
plemented in the MATLAB

s

routine fmincon.

3.3.1. Calibration results and comparison with the data
Using the procedure described above, the calibration para-

meters are estimated as:

, , , 0.13, 0.91, 1.73, 1.44 8λ ζ ψ κθ* = [ ] = [ − ] ( )⊤ ⊤

Based on the Maximum Likelihood parameters θ* and the
building-specific information zî contained in the data set, the
loss size probability distribution function for each building (with
index i) can now be determined based on the total probability
theorem:

f y f y pz , x , x z
9

Y i i
j

k

Y i ij ij i,Z ,
1

X X Zi i

i

i i i i( ) ( ) ( )∑^ θ θ ^* = * ⋅
( )

Θ Θ
=

Here, fY ,Xi i Θ is the probability density function for the model

output Yi (financial loss in building i) conditional on the model
input, i.e. the building-specific risk indicators xi . The model has to
be evaluated ki times to account for the uncertainty in the un-
known risk indicators Xi as expressed by the discretized prob-
ability mass function pX Zi i (see also Section 2.2.1). It should be

noted that, even though the same model is used for all buildings,
the probability density functions fY ,Xi i Θ and fY Z ,i i Θ are specific to

the building i due to the conditioning on the risk-indicators
⎡⎣ ⎤⎦a a n n vx , , , ,i tot i max i R i C i i, , , ,= ⊤ and the information zî contained in

the data set, i.e. the insured value, the volume and the year of
construction.

insured 
value
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totA
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CN

V

max totA A

Data evidence Model input

deterministic
values

probability
distributions

Fig. 4. Illustration of the assumptions made to estimate the building-specific risk
indicators (model input) from the evidence provided by the data.
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For comparison with the data, the loss size distribution has to
be aggregated at portfolio level:

f y
n

f y

n
f y p

1
z ,

1
x , x z

10

Y Portfolio
i

n

Y i i

i

n

j

k

Y ij ij i,

,
1

Z ,

1 1
X X Z

i i

i

i i i i

( )
( ) ( )

∑

∑ ∑

^ θ

θ ^

( ) = *

= * ⋅
( )

Θ

Θ

=

= =

Where n denotes the number of buildings in the considered
portfolio, or the sample size of the data set. The probability density
function fY Portfolio, may be interpreted as the loss size distribution
for an arbitrary building, which is averaged over all individual
buildings in the portfolio. Fig. 5 shows a comparison of the
portfolio loss size distribution with the data. The cumulative
distribution function F yY Portfolio, ( ) is illustrated in Fig. 5a, which
allows judging the overall fit of the model in the whole range of
the observed losses. Plotting the complementary cumulative
probability distribution function F y1 Y Portfolio,− ( ) on a logarithmic
scale, as in Fig. 5b, puts emphasis on the important upper tail of
the probability distribution. The expected value E c[ ] assessed on
the basis of the modelled probability distribution function shows a
7% deviation from the sample mean.

A new engineering risk model cannot be expected to perfectly
represent the observations made in real fires right from the begin-
ning; typically a few iterations are required to improve the model. In
the case of our single family house model, the results of the first
calibration trials revealed problems with parts of the model that
could not be calibrated due to the sparse information contained in
the data set. An advantage of our approach is that engineering
knowledge can fill the gap when information is lacking in the ob-
served data and vice versa. The choice of calibration parameters was
therefore guided by the availability of quantitative engineering
knowledge: parameters with a clear physical meaning, like the time
of fire spread beyond the room of fire origin, can be defined based on
physical models or expert judgement. Processes that are more diffi-
cult to quantify are captured by the calibration parameters.

3.3.2. Effect of the calibration on the portfolio loss size distribution
Fig. 6 shows a comparison of the single family house model

before and after calibration with the observed loss size dis-
tribution at portfolio level. All model curves are based on the
Maximum Likelihood parameters for the minor loss model,

⎡⎣⎢ ⎤⎦⎥, 0.13, 0.91S λ ζθ = * * = [− ]*
⊤

⊤. Therefore, the lower part of the loss

size distributions is the same for both models.

The loss size distribution before calibration (dashed line) is
based on an initial estimate for the major loss model parameters

,L ψ κθ = [ ]⊤, see De Sanctis et al. [18] for details. The bias of this
model may be evaluated e.g. by comparing the expected fire loss
E c[ ] to the sample mean of the loss data. It is seen that the model
underestimates the observed fire risk by more than 20%. This bias
can be reduced by using the Maximum Likelihood parameters θ*
(solid line), which leads to an overestimation of the expected loss
E c[ ], but only by about 7%. The positive effect of calibration is even
more pronounced when comparing exceedance probabilities for
large losses. To give an example, the probability of a loss larger
than 500,000 CHF is between 0.004 and 0.005 both in the observed
loss size distribution and in the calibrated model. The estimate
provided by the model before calibration, 1.6 10 4⋅ − , is more than an
order of magnitude smaller.

For illustrative purposes, also the shifted log-lognormal dis-
tribution used for the minor loss model is shown in Fig. 6. Note
that this distribution is not truncated at the building's insured
value, as this is a feature of the building-specific major loss model.
Therefore, the probability of large losses is strongly overestimated
by the minor loss model.

The individual effect of the two calibration parameters for the
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Fig. 5. Comparison of the calibrated model with the data.
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major loss model, ,L ψ κθ = [ ]⊤, is illustrated in Fig. 7. The solid lines
in both graphs are based on the Maximum Likelihood parameters

θ*. In Fig. 7a only the fire spread coefficient ψ is varied. Choosing a

higher value (e.g. 0.5ψ* + , as illustrated with the dotted line)
implies increasing the velocity of the fire development in the
model and therefore increases the probability of large loss events,
and vice versa.

Fig. 7b shows the effect of varying the control time exponent κ .
It is seen that this parameter has an effect mainly on the shape of
the loss size probability distribution. When comparing the ex-
pected losses E c[ ] in Fig. 7b, one may argue that the data can be
represented better when choosing a larger value than the Max-

imum Likelihood estimate 1.44κ* = . However, our aim is not to
model the expected loss of an average building at portfolio level
but to best represent the loss size probability distribution at object
level, as a function of the building-specific risk indicators. Whether
this goal was achieved is discussed in the following.

3.3.3. Results for different sub-portfolios
Fig. 8 shows a comparison of the model with the observed

losses for different groups of buildings. The effect of the build-
ing characteristics is illustrated by dividing the data into two

equal-sized groups according to different risk indicators. For
Fig. 8a, the data set has been separated according to the building's
insured value V . The distribution of the loss size in both subsets is

estimated using the Maximum Likelihood parameters θ*; only
the risk indicators describing the individual buildings differ.
The comparison with the observed loss size distributions shows
that the model is able to describe the differences between the
two groups of buildings fairly well. It should be noted that
the statistical uncertainty in the tail of the observed loss dis-
tribution is higher than in Figs. 5 and 7 because of the reduced
sample size.

Fig. 8b shows a similar analysis: again the data set is divided in
two equal-sized groups, but this time according to the volume of the
buildings. Also here the model is at least qualitatively able to describe
the different characteristics of the two groups, but not as well as in
Fig. 8a. This may be explained by the fact that the building's volume
is not directly used as a model input. However, most of the risk in-
dicators needed by the engineering model are directly or indirectly
derived from it, see Fig. 4. This indirect estimation of the model input
introduces large uncertainties into the calibration procedure. With a
data set containing evidence on all model input risk indicators, it
should be possible to produce better results.
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Fig. 7. Effect of the calibration parameters on the loss distribution at portfolio level.
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Fig. 8. Comparison of the model with data for different types of buildings.Model validation and discussion of the calibration results.
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In engineering decision-making, the goal is not simply to de-
scribe or explain the observations made in the past; instead, the
models shall be used to predict future outcomes of decisions. The
aim of model validation in this context is to judge whether it can
be reasonably assumed that the model is able to estimate the fire
risk in a new context after its calibration to a limited data set. Only
an informal discussion of this requirement is presented in the
following, as the focus of the present paper is on model calibration
rather than validation; a more rigorous treatment can be found
e.g. in Hastie et al. [26].

A simple approach for model validation is to calibrate the
model only to a subset of the observations before applying it to the
remaining data. The two subsets should be comparable in terms of
the range of relevant building characteristics to avoid problems
introduced by the effect of different risk indicators. For Fig. 9 we
randomly selected 60% of the data to be used as a “training set”, i.e.
for calibrating the model. The resulting Maximum Likelihood
parameters are similar, but not equal to the parameters in Eq. (8)
that were derived from the calibration with the whole data set.
The model is then applied to the remaining 40% of the data; this
“test set” is used to compare the prediction with observations. The
same procedure is applied ten times with different random
training sets; Fig. 9 shows only two examples. The modelled loss
size probability distributions of the two subsets (solid and dashed
line) differ only slightly because the probability distribution of the
building-specific risk indicators is similar. Therefore, the best re-
sults are achieved with random subsets where also the observed
loss distributions were similar. Fig. 9a shows an example with only
small differences in the tail of the probability distributions that
can easily be explained by statistical uncertainty. The worst out-
come out of the ten validation trials is shown in Fig. 9b.

No trend could be observed that might explain the differences
between the model calibrated to a random training set and the
observations in the corresponding test set. Instead, outcomes like
the one in Fig. 9b seem to occur completely at random. The dif-
ferences can be attributed to the large variation of the loss size, of
which only a small fraction is explained by the building-specific
risk indicators.

Accounting for fire specific risk indicators such as e.g. the ig-
nition source, room of fire ignition or presence of fire brigades
would improve the situation. Note, however, that this information
is not available when estimating fire risk before a fire has occurred.
This lack of information leads to considerable statistical un-
certainty especially in the important upper tail of the loss size

probability distribution, which explains the large variation in ob-
served frequencies of large losses when using small data samples
to estimate F yY Portfolio, ( ) (e.g. when comparing the training and test
data in Fig. 9b). The effect of statistical uncertainty on the results
of model calibration can be reduced by increasing the sample size,
e.g. by using the whole data set for calibration as in Section 3.3.
However, even with a very large data set, model calibration can
only reduce the bias, or systematic error, of the model and not the
inherent uncertainties of building fire events.

Our goal was to develop a risk model that after calibration with
fire loss data can be applied for evaluating the efficiency of risk
reduction measures in a non-homogeneous building portfolio.
Based on this goal we can derive three different requirements that
have to be fulfilled by the model:

Physical modelling approach: the model assumptions and the
final performance of the model have to be consistent with the
physical processes underlying the problem. This property of the
model is important for evaluating the effect of fire safety in-
vestments, especially if no information on the risk reduction
measures is contained in the data.
Influence of building-specific risk indicators: the behaviour of the
model for buildings with different risk indicators has to be
consistent with the observed losses in different groups of
buildings. A good fit to the data in relation to different building
characteristics is also an indicator for an appropriate physical
modelling.
Overall fit to the data: after aggregation at portfolio level, the
model has to be able to represent the observed loss size
probability distribution. This property is important for model-
ling the risk in absolute terms (expected loss in CHF) with as
little bias as possible.

The Maximum Likelihood calibration improves both the overall
fit to the data and an appropriate dependence of the building-
specific risk indicators. The calibration does, however, not guar-
antee that the model is consistent with the physics underlying the
problem. Judging the plausibility of the risk assessment results
from an engineering point of view thus remains an important task
during the process of model development. Adjusting the model
assumptions to achieve an optimal fit to the data while dis-
regarding physical understanding of the fire problem is clearly not
a valid approach. A good engineering model will not require much
trade-off between the three requirements discussed above: the fit
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Loss size c [CHF]

 

 

10
3

10
4

10
5

10
6

10
−4

10
−3

10
−2

10
−1

10
0

Data Training set A (E[c]=17’457 CHF)
Model Training set A (E[c]=18’168 CHF)
Data Test set A (E[c]=16’855 CHF)
Model Test set A (E[c]=18’185 CHF)

λ* = −0.15, ζ* = 0.89, ψ* = 1.51, κ* = 1.42

Loss size c [CHF]

 

 

10
3

10
4

10
5

10
6

10
−4

10
−3

10
−2

10
−1

10
0

Data Training set B (E[c]=15’147 CHF)
Model Training set B (E[c]=15’392 CHF)
Data Test set B (E[c]=20’323 CHF)
Model Test set B (E[c]=15’266 CHF)

1−
(

)
Y,

Po
rtf

ol
io

F
   

y
c

=

1−
(

)
Y,

Po
rtf

ol
io

F
   

y
c

=

Fig. 9. Validation results for two different random training sets (60% of the data) and corresponding test sets (remaining 40% of the data). (a) shows a typical example with
only small differences between the two samples, (b) the worst outcome out of ten validation trials.
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to the observed loss data will generally be good if the model is able
to represent the physics and characteristics of real fire events.

4. Summary and conclusion

In the present paper it is shown how an engineering model for
fire risk assessment can be calibrated to statistical data on real fire
events, e.g. fire insurance statistics or fire brigade reports. The data
is usually collected in a non-homogeneous portfolio of buildings
with different risk-relevant characteristics. In a companion paper
by De Sanctis et al. [18] it has been shown how the differences
between the individual buildings can be accounted for by devel-
oping generic models for fire risk assessment. The framework
presented in this paper allows to calibrate such a model to sta-
tistical data. The framework is applicable also if the data does not
contain full information on the model input or if information on
small fire events is missing.

As an example, we apply the calibration procedure to a generic
fire risk model for single family houses that was described in De
Sanctis et al. [18]. The calibration is conducted using Swiss build-
ing fire insurance data. Additional assumptions for several model
input variables were necessary because the data set does not
contain full information on all risk indicators required by the
model. Nevertheless, the calibration can reduce the bias in the
engineering model considerably. We also show how the model can
be validated by using only one part of the data for calibration.

The procedure described in this paper provides a consistent
way of combining a physical modelling approach with statistical
information from real fire events. The calibration with real-world
data helps to reduce the bias (systematic error) introduced by
simplified modelling assumptions. This is important especially in
the context of cost-benefit studies where the risk reduction due to
a fire safety measure shall be compared to its costs.

Even with data containing only very little information on the
problem at hand, the performance of the model can be improved
with the aid of model calibration. Besides the direct bias-reducing
effect, the calibration and validation of an engineering model with
statistical data can reveal inconsistencies in the model structure
and foster an improved physical understanding of the problem at
hand. Finally, the development of generic fire risk models helps to
provide the requirements for future data collection by defining
observable risk indicators that contain information on the risk and
by highlighting the deficiencies of current data collection efforts.
Based on this feedback loop, both the physical models and the data
collection can be improved in the long run.

The calibration of engineering models is obviously limited by
the data available for calibration. This holds especially for rare
events like structural collapse or multiple death fires, where the
data base will always remain small. But also the quality of the
physical models can be a limiting factor: calibrating a model that is
not able to capture the behaviour of real fires at least qualitatively
will not be successful. The strength of our approach is the com-
bination of engineering knowledge with statistical data: observa-
tions from real fire events are most helpful in areas where the
uncertainties are high and the understanding of the physical
processes is poor. Engineering models, on the other hand, can be
used to fill the gaps in the available data.
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