87 research outputs found

    The Impacts of Wind Speed Trends and 30-Year Variability in Relation to Hydroelectric Reservoir Inflows on Wind Power in the Pacific Northwest

    Get PDF
    In hydroelectric dominated systems, the value and benefits of energy are higher during extended dry periods and lower during extended or extreme wet periods. By accounting for regional and temporal differences in the relationship between wind speed and reservoir inflow behavior during wind farm site selection, the benefits of energy diversification can be maximized. The goal of this work was to help maximize the value of wind power by quantifying the long-term (30-year) relationships between wind speed and streamflow behavior, using British Columbia (BC) and the Pacific Northwest (PNW) as a case study. Clean energy and self-sufficiency policies in British BC make the benefits of increased generation during low streamflow periods particularly large. Wind density (WD) estimates from a height of 10m (North American Regional Reanalysis, NARR) were correlated with cumulative usable inflows (CUI) for BC (collected from BC Hydro) for 1979–2010. The strongest WD-CUI correlations were found along the US coast (r ~0.55), whereas generally weaker correlations were found in northern regions, with negative correlations (r ~ -0.25) along BC’s North Coast. Furthermore, during the lowest inflow years, WD anomalies increased by up to 40% above average values for the North Coast. Seasonally, high flows during the spring freshet were coincident with widespread negative WD anomalies, with a similar but opposite pattern for low inflow winter months. These poorly or negatively correlated sites could have a moderating influence on climate related variability in provincial electricity supply, by producing greater than average generation in low inflow years and reduced generation in wet years. Wind speed and WD trends were also analyzed for all NARR grid locations, which showed statistically significant positive trends for most of the PNW and the largest increases along the Pacific Coast

    Quantification of blue carbon in salt marshes of the Pacific coast of Canada

    Get PDF
    Tidal salt marshes are known to accumulate "blue carbon " at high rates relative to their surface area, which render these systems among the Earth's most efficient carbon (C) sinks. However, the potential for tidal salt marshes to mitigate global warming remains poorly constrained because of the lack of representative sampling of tidal marshes from around the globe, inadequate areal extent estimations, and inappropriate dating methods for accurately estimating C accumulation rates. Here we provide the first estimates of organic C storage and accumulation rates in salt marshes along the Pacific coast of Canada, within the United Nations Educational, Scientific and Cultural Organization (UNESCO) Clayoquot Sound Biosphere Reserve and Pacific Rim National Park Reserve, a region currently underrepresented in global compilations. Within the context of other sites from the Pacific coast of North America, these young Clayoquot Sound marshes have relatively low C stocks but are accumulating C at rates that are higher than the global average with pronounced differences between high and low marsh habitats. The average C stock calculated during the past 30 years is 54 +/- 5 Mg C ha(-1) (mean +/- standard error), which accounts for 81 % of the C accumulated to the base of the marsh peat layer (67 +/- 9 Mg C ha(-1)). The total C stock is just under one-third of previous global estimates of salt marsh C stocks, likely due to the shallow depth and young age of the marsh. In contrast, the average C accumulation rate (CAR) (184 +/- 50 g C m(-2) yr(-1) to the base of the peat layer) is higher than both CARs from salt marshes along the Pacific coast (112 +/- 12 g C m(-2) yr(-1)) and global estimates (91 +/- 7 g C m(-2) yr(-1)). This difference was even more pronounced when we considered individual marsh zones: CARs were significantly greater in high marsh (303 +/- 45 g C m(-2) yr(-1)) compared to the low marsh sediments (63 +/- 6 g C m(-2) yr(-1)), an observation unique to Clayoquot Sound among NE Pacific coast marsh studies. We attribute low CARs in the low marsh zones to shallow-rooting vegetation, reduced terrestrial sediment inputs, negative relative sea level rise in the region, and enhanced erosional processes. Per hectare, CARs in Clayoquot Sound marsh soils are approximately 2-7 times greater than C uptake rates based on net ecosystem productivity in Canadian boreal forests, which highlights their potential importance as C reservoirs and the need to consider their C accumulation capacity as a climate mitigation co-benefit when conserving for other salt marsh ecosystem services

    Quantification of Blue Carbon in Salt Marshes of the Pacific Coast of Canada

    Full text link
    Tidal salt marshes are known to accumulate “blue carbon” at high rates relative to their surface area, which render these systems among the Earth’s most efficient carbon (C) sinks. However, the potential for tidal salt marshes to mitigate global warming remains poorly constrained because of the lack of representative sampling of tidal marshes from around the globe, inadequate areal extent estimations, and inappropriate dating methods for accurately estimating C accumulation rates. Here we provide the first estimates of organic C storage and accumulation rates in salt marshes along the Pacific coast of Canada, within the United Nations Educational, Scientific and Cultural Organization (UNESCO) Clayoquot Sound Biosphere Reserve and Pacific Rim National Park Reserve, a region currently underrepresented in global compilations. Within the context of other sites from the Pacific coast of North America, these young Clayoquot Sound marshes have relatively low C stocks but are accumulating C at rates that are higher than the global average with pronounced differences between high and low marsh habitats. The average C stock calculated during the past 30 years is 54 5MgC ha-1 (mean standard error), which accounts for 81% of the C accumulated to the base of the marsh peat layer (67 9MgC ha-1/. The total C stock is just under one-third of previous global estimates of salt marsh C stocks, likely due to the shallow depth and young age of the marsh. In contrast, the average C accumulation rate (CAR) (184 50 gCm-2 yr-1 to the base of the peat layer) is higher than both CARs from salt marshes along the Pacific coast (112 12 gCm-2 yr-1/ and global estimates (91 7 gCm-2 yr-1/. This difference was even more pronounced when we considered individual marsh zones: CARs were significantly greater in high marsh (303 45 gCm-2 yr-1/ compared to the low marsh sediments (63 6 gCm-2 yr-1/, an observation unique to Clayoquot Sound among NE Pacific coast marsh studies. We attribute low CARs in the low marsh zones to shallow rooting vegetation, reduced terrestrial sediment inputs, negative relative sea level rise in the region, and enhanced erosional processes. Per hectare, CARs in Clayoquot Sound marsh soils are approximately 2–7 times greater than C uptake rates based on net ecosystem productivity in Canadian boreal forests, which highlights their potential importance as C reservoirs and the need to consider their C accumulation capacity as a climate mitigation co-benefit when conserving for other salt marsh ecosystem services

    Inferring source regions and supply mechanisms of iron in the Southern Ocean from satellite chlorophyll data

    Get PDF
    Highlights ‱ Shelf sediment iron source concentrated around coastal margins. ‱ No large iron flux from sediments on shallow submerged plateaus in the open ocean. ‱ Horizontal advection of iron more important than upwelling of iron at ocean fronts. ‱ Western boundary currents major supply mechanism of iron for Sub-Antarctic Zone. Abstract Primary productivity is limited by the availability of iron over large areas of the global ocean. Changes in the supply of iron to these regions could have major impacts on primary productivity and the carbon cycle. However, source regions and supply mechanisms of iron to the global oceans remain poorly constrained. Shelf sediments are considered one of the largest sources of dissolved iron to the global ocean, and a large shelf sediment iron flux is prescribed in many biogeochemical models over all areas of bathymetry shallower than 1000 m. Here, we infer the likely location of shelf sediment iron sources in the Southern Ocean, by identifying where satellite chlorophyll concentrations are enhanced over shallow bathymetry (2 mg m−3 are only found within 50 km of a continental or island coastline. These results suggest that sedimentary iron sources only exist on continental and island shelves. Large sedimentary iron fluxes do not seem present on seamounts and submerged plateaus. Large chlorophyll blooms develop where the western boundary currents detach from the continental shelves, and turn eastward into the Sub-Antarctic Zone. Chlorophyll concentrations are enhanced along contours of sea surface height extending off the continental shelves, as shown by the trajectories of virtual water parcels in satellite altimetry data. These analyses support the hypothesis that bioavailable iron from continental shelves is entrained into western boundary currents, and advected into the Sub-Antarctic Zone along the Dynamical Subtropical Front. Our results indicate that upwelling at fronts in the open ocean is unlikely to deliver iron to the ocean surface from deep sources. Finally, we hypothesise how a reduction in sea level may have altered the distribution of shelf sediment iron sources in the Southern Ocean and increased export production over the Sub-Antarctic Zone during glacial intervals

    Paleoecological Investigation of Vegetation, Climate and Fire History in, and Adjacent to, Kootenay National Park, Southeastern British Columbia, Canada

    Get PDF
    Paleoecological investigation of two montane lakes in the Kootenay region of southeast British Columbia, Canada, reveal changes in vegetation in response to climate and fire throughout the Holocene. Pollen, charcoal, and lake sediment carbon accumulation rate analyses show seven distinct zones at Marion Lake, presently in the subalpine Engelmann Spruce-Subalpine Fir (ESSF) biogeoclimatic (BEC) zone of Kootenay Valley, British Columbia. Comparison of these records to nearby Dog Lake of Kootenay National Park of Canada in the Montane Spruce (MS) BEC zone of Kootenay Valley, British Columbia reveals unique responses of ecosystems in topographically complex regions. The two most dramatic shifts in vegetation at Marion Lake occur firstly in the early Holocene/late Pleistocene in ML Zone 3 (11,010–10,180 cal. yr. B.P.) possibly reflecting Younger Dryas Chronozone cooling followed by early Holocene xerothermic warming noted by the increased presence of the dry adapted conifer, Douglas-fir (Pseudotsuga menziesii) and increasing fire frequency. The second most prominent change occurred at the transition from ML Zone 5 through 6a (∌2,500 cal. yr. B.P.). This zone transitions from a warmer to a cooler/wetter climate as indicated by the increase in western hemlock (Tsuga heterophylla) and subsequent drop in fire frequency. The overall cooling trend and reduction in fire frequency appears to have occurred ∌700 years later than at Dog Lake (∌43 km to the south and 80 m lower in elevation), resulting in a closed montane spruce forest, whereas Marion Lake developed into a subalpine ecosystem. The temporal and ecological differences between the two study sites likely reflects the particular climate threshold needed to move these ecosystems from developed forests to subalpine conditions, as well as local site climate and fire conditions. These paleoecological records indicate future warming may result in the MS transitioning into an Interior Douglas Fir (IDF) dominated landscape, while the ESSF may become more forested, similar to the modern MS, or develop into a grassland-like landscape dependent on fire frequency. These results indicate that climate and disturbance over a regional area can dictate very different localized vegetative states. Local management implications of these dynamic landscapes will need to understand how ecosystems respond to climate and disturbance at the local or ecosystem/habitat scale

    Compilation of Southern Ocean sea-ice records covering the last glacial-interglacial cycle (12–130 ka)

    Get PDF
    Antarctic sea ice forms a critical part of the Southern Ocean and global climate system. The behaviour of Antarctic sea ice throughout the last glacial-interglacial (G-IG) cycle (12 000–130 000 years) allows us to investigate the interactions between sea ice and climate under a large range of mean climate states. Understanding both temporal and spatial variations in Antarctic sea ice across a G-IG cycle is crucial to a better understanding of the G-IG regulation of atmospheric CO2, ocean circulation, nutrient cycling and productivity. This study presents 28 published qualitative and quantitative estimates of G-IG sea ice from 24 marine sediment cores and an Antarctic ice core. Sea ice is reconstructed from the sediment core records using diatom assemblages and from the ice core record using sea-salt sodium flux. Whilst all regions of the Southern Ocean display the same overall pattern in G-IG sea-ice variations, the magnitudes and timings vary between regions. Sea-ice cover is most sensitive to changing climate in the regions of high sea-ice outflow from the Weddell Sea and Ross Sea gyres, as indicated by the greatest magnitude changes in sea ice in these areas. In contrast the Scotia Sea sea-ice cover is much more resilient to moderate climatic warming, likely due to the meltwater stratification from high iceberg flux through “iceberg alley” helping to sustain high sea-ice cover outside of full glacial intervals. The differing sensitivities of sea ice to climatic shifts between different regions of the Southern Ocean has important implications for the spatial pattern of nutrient supply and primary productivity, which subsequently impact carbon uptake and atmospheric CO2 concentrations changes across a G-IG cycle

    A 5,000-Year Fire History in the Strait of Georgia Lowlands, British Columbia, Canada

    Get PDF
    Improved knowledge of long-term fire regimes and climate-fire-human relationships are important for effective management of forested ecosystems. In this study, we use two, high-resolution sedimentary-charcoal records to provide new, mid to late Holocene fire histories for the driest forests in south coastal British Columbia, Canada: Somenos Lake in the Moist Maritime Coastal Douglas Fir (CDFmm) forests on southeastern Vancouver Island and Chadsey Lake in the Dry Maritime Coastal Western Hemlock (CWHdm) forests in the central Fraser Valley. Peak fire frequency at Somenos Lake in southeast Vancouver Island was highest prior to 3,500 cal yr BP at 9.5 fires per 1,000 years (at ~4,500 cal yr BP), with a mean fire return interval of 188 years (122–259) and 24 fire peaks for the 4,855 year record. Peak fire frequency at Chadsey Lake in the Fraser Valley of the Lower Mainland of BC was highest (5.9) at 2,736 cal yr BP but fairly uniform from ~4,300 to 2,500 cal yr BP. The mean fire return interval at Chadsey Lake was 214 years (150–285) with 15 fire peaks for the ~4,258 year record. The fire history for Chadsey Lake appears to be strongly tied to broad regional climate patterns for the region whereas the variability in the Somenos Lake fire record displays a more complex pattern likely the result of the interplay between climatic and anthropogenic factors. Our results show how different age models using long- vs. short-term temporal scales of analysis can affect fire history interpretation and highlight the importance of considering spatial variability when interpreting mechanisms driving fire activity in this region

    Global Ocean Sediment Composition and Burial Flux in the Deep Sea

    Get PDF
    Quantitative knowledge about the burial of sedimentary components at the seafloor has wide-ranging implications in ocean science, from global climate to continental weathering. The use of 230Th-normalized fluxes reduces uncertainties that many prior studies faced by accounting for the effects of sediment redistribution by bottom currents and minimizing the impact of age model uncertainty. Here we employ a recently compiled global data set of 230Th-normalized fluxes with an updated database of seafloor surface sediment composition to derive atlases of the deep-sea burial flux of calcium carbonate, biogenic opal, total organic carbon (TOC), nonbiogenic material, iron, mercury, and excess barium (Baxs). The spatial patterns of major component burial are mainly consistent with prior work, but the new quantitative estimates allow evaluations of deep-sea budgets. Our integrated deep-sea burial fluxes are 136 Tg C/yr CaCO3, 153 Tg Si/yr opal, 20Tg C/yr TOC, 220 Mg Hg/yr, and 2.6 Tg Baxs/yr. This opal flux is roughly a factor of 2 increase over previous estimates, with important implications for the global Si cycle. Sedimentary Fe fluxes reflect a mixture of sources including lithogenic material, hydrothermal inputs and authigenic phases. The fluxes of some commonly used paleo-productivity proxies (TOC, biogenic opal, and Baxs) are not well-correlated geographically with satellite-based productivity estimates. Our new compilation of sedimentary fluxes provides detailed regional and global information, which will help refine the understanding of sediment preservation
    • 

    corecore