28 research outputs found

    Four-dimensional growth response of mature Larix decidua to stem burial under natural conditions

    Get PDF
    This paper illustrates the effects of abrupt stem burial (burial depth ~0.5m) on tree growth in mature (46±8years) European larch (Larix decidua Mill.) trees. In contrast to the previous research, which was mostly carried out with saplings and on experimental sites where regular aggradation occurred through the transport of sand, this work focuses on the impact of natural, abrupt burial of mature trees with rocks contained in a sandy-silty matrix typical for debris flows in mountainous headwater catchments. The effect of burial is assessed radially and axially within the stem and over almost three decades after burial. The analysis of growth disturbances and their intensity was based on the 143 cross sections (572 growth series) taken at 10-cm intervals from 6 Larix decidua Mill. The results show quite clearly that abrupt burial causes massive suppression of radial growth as compared to pre-event conditions (mean 77%, min 38%, max 92%, SD 7.2%). The trees sampled were unable to resume pre-burial growth rates even after 25years, but recovered to reference growth conditions (as measured in undisturbed, local reference trees) after 15years (min 3years, max 25years, SD 9years). The results differ only insignificantly between different heights along the tree axis and suppression is equally well expressed at different radial positions within the ste

    Four-dimensional growth response of mature Larix decidua to stem burial under natural conditions

    Get PDF
    This paper illustrates the effects of abrupt stem burial (burial depth ~0.5 m) on tree growth in mature (46 ± 8 years) European larch (Larix decidua Mill.) trees. In contrast to the previous research, which was mostly carried out with saplings and on experimental sites where regular aggradation occurred through the transport of sand, this work focuses on the impact of natural, abrupt burial of mature trees with rocks contained in a sandy-silty matrix typical for debris flows in mountainous headwater catchments. The effect of burial is assessed radially and axially within the stem and over almost three decades after burial. The analysis of growth disturbances and their intensity was based on the 143 cross sections (572 growth series) taken at 10-cm intervals from 6 Larix decidua Mill. The results show quite clearly that abrupt burial causes massive suppression of radial growth as compared to pre-event conditions (mean 77 %, min 38 %, max 92 %, SD 7.2 %). The trees sampled were unable to resume pre-burial growth rates even after 25 years, but recovered to reference growth conditions (as measured in undisturbed, local reference trees) after 15 years (min 3 years, max 25 years, SD 9 years). The results differ only insignificantly between different heights along the tree axis and suppression is equally well expressed at different radial positions within the stem

    Possibilities and limitations of dendrogeomorphic time-series reconstructions on sites influenced by debris flows and frequent snow avalanche activity

    No full text
    Past debris-flow and snow avalanche activity was assessed for the Reiselehnrinne (Tyrol, Austria) using growth disturbances in growth-ring series of 372 Norway spruce (Picea abies (L.) Karst.) trees. Determination of events was performed by analyzing (a) the number and (b) intensity of growth disturbances within tree-ring series and (c) the spatial distribution of affected trees. Differentiation of debris flow from snow avalanche events was based on the intra-annual position of scars, callus tissues or tangential rows of traumatic resin ducts, and on the spatial distribution of trees with simultaneous reactions in the tree-ring series. We introduce a weighting factor to substantiate the dating of past process activity in a comprehensive way and to compare individual events as to their intensity and total number of tree-ring responses. The accuracy of the dendrogeomorphic assessment was then evaluated by comparing the reconstructed event frequency with chronologies available for the Reiselehnrinne. Comparison of tree-ring with historical data demonstrated clearly that the reconstructed event frequency contains the majority of past debris flow and snow avalanche events in the Reiselehnrinne, but that dating of events is not always possible, especially if they are clustered in time or have a limited spread on the cone

    Effects of Open-Cast Sulphur Mining on Sediment Transfers and Toxification of Riparian Forests

    No full text
    The spoil heaps of the sulphur mines of the egoiul omânesc volcanic cone are intensely reworked by mass movement processes which not only lead to severe sedimentation in downstream rivers, but also to the toxification of riparian orway spruce (icea abies (.) arst.) forests. Along the lateral borders of the Dumitrelul retention basin, recent sedimentation has covered . abies trees with up to 160 cm of toxic, sulphur‐rich material originating from the spoil heaps deposits. This study documents the deposition of toxic sediments and illustrates the effects that these sulphur‐rich sediments have on tree growth. The results show that trees affected by sedimentation reacted with severe growth suppression and the formation of tangential rows of traumatic resin ducts, and that the intensity and persistence of growth anomalies in trees are positively correlated with local depths and granulometry of sediments

    Reconstruction of glacial lake outburst floods in northern Tien Shan: Implications for hazard assessment

    No full text
    Glacier lake outburst floods (GLOFs) and related debris flows are among the most significant natural threats in the Tien Shan Mountains of Kyrgyzstan and have even caused the loss of life and damage to infrastructure in its capital Bishkek. An improved understanding of the occurrence of this process is essential so as to be able to design reliable disaster risk reduction strategies, even more so in view of ongoing climate change and scenarios of future evolutions. Here, we apply a dendrogeomorphic approach to reconstruct past debris-flow activity on the Aksay cone (Ala-Archa valley, Kyrgyz range), where outbursting glacier lakes and intense rainfalls have triggered huge debris flows over the past decades. A total of 96 Picea abies (L.) Karst. trees growing on the cone and along the main channel have been selected based on the evidence of past debris-flow damage in their trunks; these trees were then sampled using increment borers. The dating of past events was based on the assessment of growth disturbances (GD) in the tree-ring records and included the detection of injuries, tangential rows of traumatic resin ducts, reaction wood, and abrupt growth changes. In total, 320 GD were identified in the tree-ring samples. In combination with aerial imagery and geomorphic recognition in the field, reactions in trees and their position on the cone have allowed reconstruction of the main spatial patterns of past events on the Aksay cone. Our findings suggest that at least 27 debris flows have occurred on the site between 1877 and 2015 and point to the occurrence of at least 17 events that were not documented prior to this study. We also observe high process activity during the 1950s and 1960s, with major events on the cone in 1950, 1966, and 1968, coinciding with phases of slight glacier advance. The spatial analyses of events also point to two different spatial patterns, suggesting that quite dissimilar magnitudes probably occurred during glacier lake outburst floods and rainfall-induced debris-flow events. The results presented here represent the longest, annually resolved GLOF series in the region, which in turn has key implications on risk assessment, not just in the Ala-Archa valley, but also in the entire Kyrgyz range (northern Tien Shan)
    corecore