211 research outputs found

    The X-ray binary 2S0114+650=LSI+65 010:A slow pulsar or tidally-induced pulsations?

    Get PDF
    The X-ray source 2S0114+650=LSI+65 010 is a binary system containing a B-type primary and a low mass companion believed to be a neutron star. The system has three reported periodicities: the orbital period, P{orb}~11.6 d, X-ray flaring with P{flare}~2.7 hr, and a "superorbital" X-ray periodicity P{super}~30.7 d. The objective of this paper is to show that the puzzling periodicities in the system may be explained in the context of scenarios in which tidal interactions drive oscillations in the B-supergiant star. We calculate the solution of the equations of motion for one layer of small surface elements distributed along the equator of the star, as they respond to the forces due to gas pressure, centrifugal, coriolis, viscous forces, and the gravitational forces of both stars. This calculation provides variability timescales that can be compared with the observations. In addition, we use observational data obtained at the Observatorio Astron\'omico Nacional en San Pedro M\'artir (OAN/SPM) between 1993-2004 to determine which of the periodicities may be present in the optical region. We suggest that the tidal oscillations lead to a structured stellar wind which, when fed to the neutron star, produces the X-ray modulations. The connection between the stellar oscillations and the modulation of the mass ejection may lie in the shear energy dissipation generated by the tangential motions that are produced by the tidal interaction, particularly in the tidal bulge region. The tidal oscillation scenario weakens the case for 2S0114+650 containing a magnetar descendent.Comment: 12 pages, 14 figure

    Eccentric binaries: Tidal flows and periastron events

    Full text link
    A number of binary systems present evidence of enhanced activity around periastron passage, suggesting a connection between tidal interactions and these periastron effects. The aim of this investigation is to study the time-dependent response of a star's surface as it is perturbed by a binary companion. We derive expressions for the rate of dissipation, E˙\dot{E}, of the kinetic energy by the viscous flows driven by tidal interactions on the surface layer. The method is tested by comparing the results from a grid of model calculations with the analytical predictions of Hut (1981) and the synchronization timescales of Zahn (1977, 2008). Our results for the orbital cycle averaged energy dissipation on orbital separation are consistent with those of Hut for model binaries with orbital separations at periastron >8 stellar radii. The model also reproduces the predicted pseudo-synchronization angular velocity for moderate eccentricities and the same scaling of synchronization timescales for circular orbits with separation as given by Zahn. The computations gives the distribution of E˙\dot{E} over the stellar surface, and show that it is generally concentrated at the equatorial latitude, with maxima generally located around four clearly defined longitudes, corresponding to the fastest azimuthal velocity perturbations. Maximum amplitudes occur around periastron passage or slightly thereafter for supersynchronously rotating stars. In very eccentric binaries, the distribution of E˙\dot{E} over the surface changes significantly as a function of orbital phase, with small spatial structures appearing after periastron. An exploratory calculation for the highly eccentric binary system delta Sco suggests that the sudden and large amplitude variations in surface properties around periastron may contribute toward the activity observed around this orbital phase.Comment: Accepted for publication in A&

    An experimental investigation of chatter effects on tool life

    Get PDF
    Tool wear is one of the most important considerations in machining operations as it affects surface quality and integrity, productivity and cost. The most commonly used model for tool life analysis is the one proposed by F.W. Taylor about a century ago. Although the extended form of this equation includes the effects of important cutting conditions on tool wear, tool life studies are mostly performed under stable cutting conditions where the effect of chatter vibrations are not considered. This paper presents an empirical attempt to understand tool life under vibratory cutting conditions. Tool wear data are collected in turning and milling on different work materials under stable and chatter conditions. The effects of cutting conditions as well as severity of chatter on tool life are analyzed. The results indicate significant reduction in tool life due to chatter as expected. They also show that the severity of chatter, and thus the vibration amplitude, strongly reduces the life of cutting tools. These results can be useful in evaluating the real cost of chatter by including the reduced tool life. They can also be useful in justifying the cost of chatter suppression and more rigid machining systems

    The development of an instrument for measuring strength of elbow flexion in elementary school children

    Get PDF
    This study was carried out in an attempt to develop and evaluate an instrument which would satisfactorily measure die strength of elbow flexion of boys and girls in grades three, four, five and six. Elbow flexion was chosen as an important element of total strength and as a factor in many of the activities in which children participate. The bar-scale apparatus used in this study consisted of either a Chatillon spring scale or a regular bathroom scale and a portable chinning bar set in a doorway. The test using this apparatus was administered to 112 children and evaluated for reliability, validity and objectivity. Since strength varies widely in children of different ages and between the sexes, the evaluation was done separately by grade and sex. A cable-tension test of elbow flexion strength was used as the criterion for the validity coefficients

    Investigating the Chemically Homogeneous Evolution Channel and its Role in the Formation of the Enigmatic Binary Black Hole Progenitor Candidate HD 5980

    Full text link
    Chemically homogeneous evolution (CHE) is a promising channel for forming massive binary black holes. The enigmatic, massive Wolf-Rayet (WR) binary HD 5980 A&B has been proposed to have formed through this channel. We investigate this claim by comparing its observed parameters with CHE models. Using MESA, we simulate grids of close massive binaries then use a Bayesian approach to compare them with the stars' observed orbital period, masses, luminosities, and hydrogen surface abundances. The most probable models, given the observational data, have initial periods ~3 days, widening to the present-day ~20 day orbit as a result of mass loss -- correspondingly, they have very high initial stellar masses (\gtrsim150 M_\odot). We explore variations in stellar wind-mass loss and internal mixing efficiency, and find that models assuming enhanced mass-loss are greatly favored to explain HD 5980, while enhanced mixing is only slightly favoured over our fiducial assumptions. Our most probable models slightly underpredict the hydrogen surface abundances. Regardless of its prior history, this system is a likely binary black hole progenitor. We model its further evolution under our fiducial and enhanced wind assumptions, finding that both stars produce black holes with masses ~19-37 M_\odot. The projected final orbit is too wide to merge within a Hubble time through gravitational waves alone. However, the system is thought to be part of a 2+2 hierarchical multiple. We speculate that secular effects with the (possible) third and fourth companions may drive the system to promptly become a gravitational-wave source.Comment: 23 pages, 9 figures, 2 tables, 2 appendices. Accepted for publication in Ap

    A Changing Wind Collision

    Get PDF
    We report on the first detection of a global change in the X-ray emitting properties of a wind–wind collision, thanks to XMM-Newton observations of the massive Small Magellenic Cloud (SMC) system HD 5980. While its light curve had remained unchanged between 2000 and 2005, the X-ray flux has now increased by a factor of ~2.5, and slightly hardened. The new observations also extend the observational coverage over the entire orbit, pinpointing the light-curve shape. It has not varied much despite the large overall brightening, and a tight correlation of fluxes with orbital separation is found without any hysteresis effect. Moreover, the absence of eclipses and of absorption effects related to orientation suggests a large size for the X-ray emitting region. Simple analytical models of the wind–wind collision, considering the varying wind properties of the eruptive component in HD 5980, are able to reproduce the recent hardening and the flux-separation relationship, at least qualitatively, but they predict a hardening at apastron and little change in mean flux, contrary to observations. The brightness change could then possibly be related to a recently theorized phenomenon linked to the varying strength of thin-shell instabilities in shocked wind regions

    Generative models of the human connectome

    Get PDF
    The human connectome represents a network map of the brain's wiring diagram and the pattern into which its connections are organized is thought to play an important role in cognitive function. The generative rules that shape the topology of the human connectome remain incompletely understood. Earlier work in model organisms has suggested that wiring rules based on geometric relationships (distance) can account for many but likely not all topological features. Here we systematically explore a family of generative models of the human connectome that yield synthetic networks designed according to different wiring rules combining geometric and a broad range of topological factors. We find that a combination of geometric constraints with a homophilic attachment mechanism can create synthetic networks that closely match many topological characteristics of individual human connectomes, including features that were not included in the optimization of the generative model itself. We use these models to investigate a lifespan dataset and show that, with age, the model parameters undergo progressive changes, suggesting a rebalancing of the generative factors underlying the connectome across the lifespan.Comment: 38 pages, 5 figures + 19 supplemental figures, 1 tabl

    Massive stars exploding in a He-rich circumstellar medium. I. Type Ibn (SN 2006jc-like) events

    Full text link
    We present new spectroscopic and photometric data of the type Ibn supernovae 2006jc, 2000er and 2002ao. We discuss the general properties of this recently proposed supernova family, which also includes SN 1999cq. The early-time monitoring of SN 2000er traces the evolution of this class of objects during the first few days after the shock breakout. An overall similarity in the photometric and spectroscopic evolution is found among the members of this group, which would be unexpected if the energy in these core-collapse events was dominated by the interaction between supernova ejecta and circumstellar medium. Type Ibn supernovae appear to be rather normal type Ib/c supernova explosions which occur within a He-rich circumstellar environment. SNe Ibn are therefore likely produced by the explosion of Wolf-Rayet progenitors still embedded in the He-rich material lost by the star in recent mass-loss episodes, which resemble known luminous blue variable eruptions. The evolved Wolf-Rayet star could either result from the evolution of a very massive star or be the more evolved member of a massive binary system. We also suggest that there are a number of arguments in favour of a type Ibn classification for the historical SN 1885A (S-Andromedae), previously considered as an anomalous type Ia event with some resemblance to SN 1991bg.Comment: 17 pages including 12 figures and 4 tables. Slightly revised version, conclusions unchanged, 1 figure added. Accepted for publication in MNRA

    Two New LBV Candidates in the M33 Galaxy

    Full text link
    We present two new luminous blue variable (LBV) candidate stars discovered in the M33 galaxy. We identified these stars (Valeev et al. 2010) as massive star candidates at the final stages of evolution, presumably with a notable interstellar extinction. The candidates were selected from the Massey et al. (2006) catalog based on the following criteria: emission in Halpha, V<18.5 and 0.35<(B-V)<1.2. The spectra of both stars reveal a broad and strong Halpha emission with extended wings (770 and 1000 km/s). Based on the spectra we estimated the main parameters of the stars. Object N45901 has a bolometric luminosity log(L/Lsun)=6.0-6.2 with the value of interstellar extinction Av=2.3+-0.1. The temperature of the star's photosphere is estimated as Tstar~13000-15000K its probable mass on the Zero Age Main Sequence is M~60-80Msun. The infrared excess in N45901 corresponds to the emission of warm dust with the temperature Twarm~1000K, and amounts to 0.1% of the bolometric luminosity. A comparison of stellar magnitude estimates from different catalogs points to the probable variability of the object N45901. Bolometric luminosity of the second object, N125093, is log(L/Lsun)=6.3-6.6, the value of interstellar extinction is Av=2.75+-0.15. We estimate its photosphere's temperature as Tstar~13000-16000K, the initial mass as M~90-120Msun. The infrared excess in N125093 amounts to 5-6% of the bolometric luminosity. Its spectral energy distribution reveals two thermal components with the temperatures Twarm~1000K and Tcold~480K. The [CaII] lines (7291A and 7323A), observed in LBV-like stars VarA and N93351 in M33, are also present in the spectrum of N125093. These lines indicate relatively recent gas eruptions and dust activity linked with them. High bolometric luminosity of these stars and broad Halpha emissions allow classifying the studied objects as LBV candidates.Comment: 14 pages, 4 figure

    Investigating the X-ray emission from the massive WR+O binary WR 22 using 3D hydrodynamical models

    Full text link
    We examine the dependence of the wind-wind collision and subsequent X-ray emission from the massive WR+O star binary WR~22 on the acceleration of the stellar winds, radiative cooling, and orbital motion. Simulations were performed with instantaneously accelerated and radiatively driven stellar winds. Radiative transfer calculations were performed on the simulation output to generate synthetic X-ray data, which are used to conduct a detailed comparison against observations. When instantaneously accelerated stellar winds are adopted in the simulation, a stable wind-wind collision region (WCR) is established at all orbital phases. In contrast, when the stellar winds are radiatively driven, and thus the acceleration regions of the winds are accounted for, the WCR is far more unstable. As the stars approach periastron, the ram pressure of the WR's wind overwhelms the O star's and, following a significant disruption of the shocks by non-linear thin-shell instabilities (NTSIs), the WCR collapses onto the O star. X-ray calculations reveal that when a stable WCR exists the models over-predict the observed X-ray flux by more than two orders of magnitude. The collapse of the WCR onto the O star substantially reduces the discrepancy in the 210  2-10\;keV flux to a factor of 6\simeq 6 at ϕ=0.994\phi=0.994. However, the observed spectrum is not well matched by the models. We conclude that the agreement between the models and observations could be improved by increasing the ratio of the mass-loss rates in favour of the WR star to the extent that a normal wind ram pressure balance does not occur at any orbital phase, potentially leading to a sustained collapse of the WCR onto the O star. Radiative braking may then play a significant r\^{o}le for the WCR dynamics and resulting X-ray emission.Comment: 16 pages, 11 figures, 2 tables. Accepted for publication in A&
    corecore