345 research outputs found

    Multicentric validation of proteomic biomarkers in urine specific for diabetic nephropathy

    Get PDF
    Background: Urine proteome analysis is rapidly emerging as a tool for diagnosis and prognosis in disease states. For diagnosis of diabetic nephropathy (DN), urinary proteome analysis was successfully applied in a pilot study. The validity of the previously established proteomic biomarkers with respect to the diagnostic and prognostic potential was assessed on a separate set of patients recruited at three different European centers. In this case-control study of 148 Caucasian patients with diabetes mellitus type 2 and duration >= 5 years, cases of DN were defined as albuminuria >300 mg/d and diabetic retinopathy (n = 66). Controls were matched for gender and diabetes duration (n = 82). Methodology/Principal Findings: Proteome analysis was performed blinded using high-resolution capillary electrophoresis coupled with mass spectrometry (CE-MS). Data were evaluated employing the previously developed model for DN. Upon unblinding, the model for DN showed 93.8% sensitivity and 91.4% specificity, with an AUC of 0.948 (95% CI 0.898-0.978). Of 65 previously identified peptides, 60 were significantly different between cases and controls of this study. In <10% of cases and controls classification by proteome analysis not entirely resulted in the expected clinical outcome. Analysis of patient's subsequent clinical course revealed later progression to DN in some of the false positive classified DN control patients. Conclusions: These data provide the first independent confirmation that profiling of the urinary proteome by CE-MS can adequately identify subjects with DN, supporting the generalizability of this approach. The data further establish urinary collagen fragments as biomarkers for diabetes-induced renal damage that may serve as earlier and more specific biomarkers than the currently used urinary albumin

    Differences in Immunoglobulin Light Chain Species Found in Urinary Exosomes in Light Chain Amyloidosis (AL)

    Get PDF
    Renal involvement is a frequent consequence of plasma cell dyscrasias. The most common entities are light chain amyloidosis, monoclonal immunoglobulin deposition disease and myeloma cast nephropathy. Despite a common origin, each condition has its own unique histologic and pathophysiologic characteristic which requires a renal biopsy to distinguish. Recent studies have shown urinary exosomes containing kidney-derived membrane and cytosolic proteins that can be used to probe the proteomics of the entire urinary system from the glomerulus to the bladder. In this study, we analyzed urine exosomes to determine the differences between exosomes from patients with light chain amyloidosis, multiple myeloma, monoclonal gammopathy of undetermined significance, and non-paraproteinemia related kidney disease controls. In patients with light chain amyloidosis, multiple myeloma and monoclonal gammopathy of undetermined significance, immunoreactive proteins corresponding to monomeric light chains were found in exosomes by western blot. In all of the amyloidosis samples with active disease, high molecular weight immunoreactive species corresponding to a decamer were found which were not found in exosomes from the other diseases or in amyloidosis exosomes from patients in remission. Few or no light chains monomeric bands were found in non-paraproteinemia related kidney disease controls. Our results showed that urinary exosomes may have tremendous potential in furthering our understanding of the pathophysiology and diagnosis of plasma cell dyscrasia related kidney diseases

    Molecular cloning and characterization of AqpZ, a water channel from Escherichia coli

    Get PDF
    The aquaporin family of molecular water channels is widely expressed throughout the plant and animal kingdoms. No bacterial aquaporins are known; however, sequence-related bacterial genes have been identified that encode glycerol facilitators (glpF). By homology cloning, a novel aquaporin-related DNA (aqpZ) was identified that contained no surface N-glycosylation consensus. The aqpZ RNA was not identified in mammalian mRNA by Northern analysis and exhibited bacterial codon usage preferences. Southern analysis failed to demonstrate aqpZ in mammalian genomic DNA, whereas a strongly reactive DNA was present in chromosomal DNA from Escherichia coli and other bacterial species and did not correspond to glpF. The aqpZ DNA isolated from E. coli contained a 693-base pair open reading frame encoding a polypeptide 28-38% identical to known aquaporins. When compared with other aquaporins, aqpZ encodes a 10-residue insert preceding exofacial loop C, truncated NH2 and COOH termini, and no cysteines at known mercury-sensitive sites. Expression of aqpZ cRNA conferred Xenopus oocytes with a 15-fold increase in osmotic water permeability, which was maximal after 5 days of expression, was not inhibited with HgCl2, exhibited a low activation energy (Ea = 3.8 kcal/mol), and failed to transport nonionic solutes such as urea and glycerol. In contrast, oocytes expressing glpF transported glycerol but exhibited limited osmotic water permeability. Phylogenetic comparison of aquaporins and homologs revealed a large separation between aqpZ and glpF, consistent with an ancient gene divergence

    Differential, Phosphorylation Dependent Trafficking of AQP2 in LLC-PK1 Cells

    Get PDF
    The kidney maintains water homeostasis by modulating aquaporin 2 (AQP2) on the plasma membrane of collecting duct principal cells in response to vasopressin (VP). VP mediated phosphorylation of AQP2 at serine 256 is critical for this effect. However, the role of phosphorylation of other serine residues in the AQP2 C-terminus is less well understood. Here, we examined the effect of phosphorylation of S256, S261 and S269 on AQP2 trafficking and association with recycling pathway markers. We used LLC-PK1 cells expressing AQP2(S-D) or (S-A) phospho mutants and a 20°C cold block, which allows endocytosis to continue, but prevents protein exit from the trans Golgi network (TGN), inducing formation of a perinuclear AQP2 patch. AQP2-S256D persists on the plasma membrane during cold block, while wild type AQP2, AQP2-S256A, S261A, S269A and S269D are internalized and accumulate in the patch. Development of this patch, a measure of AQP2 internalization, was most rapid with AQP2-S256A, and slowest with S261A and S269D. AQP2-S269D exhibited a biphasic internalization profile with a significant amount not internalized until 150 minutes of cold block. After rewarming to 37°C, wt AQP2, AQP2-S261A and AQP2-S269D rapidly redistributed throughout the cytoplasm within 20 minutes, whereas AQP2-S256A dissipated more slowly. Colocalization of AQP2 mutants with several key vesicular markers including clathrin, HSP70/HSC70, EEA, GM130 and Rab11 revealed no major differences. Overall, our data provide evidence supporting the role of S256 and S269 in the maintenance of AQP2 at the cell surface and reveal the dynamics of internalization and recycling of differentially phosphorylated AQP2 in cell culture

    Human aquaporins: regulators of transcellular water flow

    Get PDF
    Background: Emerging evidence supports the view that (AQP) aquaporin water channels are regulators of transcellular water flow. Consistentwith their expression in most tissues, AQPs are associatedwith diverse physiological and pathophysiological processes. Scope of review: AQP knockout studies suggest that the regulatory role of AQPs, rather than their action as passive channels, is their critical function. Transport through all AQPs occurs by a common passive mechanism, but their regulation and cellular distribution varies significantly depending on cell and tissue type; the role of AQPs in cell volumeregulation (CVR) is particularly notable. This reviewexamines the regulatory role of AQPs in transcellular water flow, especially in CVR.We focus on key systems of the human body, encompassing processes as diverse as urine concentration in the kidney to clearance of brain oedema. Major conclusions: AQPs are crucial for the regulation of water homeostasis, providing selective pores for the rapidmovement ofwater across diverse cellmembranes and playing regulatory roles in CVR. Gatingmechanisms have been proposed for human AQPs, but have only been reported for plant andmicrobial AQPs. Consequently, it is likely that the distribution and abundance of AQPs in a particular membrane is the determinant of membrane water permeability and a regulator of transcellular water flow. General significance: Elucidating the mechanisms that regulate transcellular water flow will improve our understanding of the human body in health and disease. The central role of specific AQPs in regulating water homeostasis will provide routes to a range of novel therapies. This article is part of a Special Issue entitled Aquaporins

    Virtual Patients and Sensitivity Analysis of the Guyton Model of Blood Pressure Regulation: Towards Individualized Models of Whole-Body Physiology

    Get PDF
    Mathematical models that integrate multi-scale physiological data can offer insight into physiological and pathophysiological function, and may eventually assist in individualized predictive medicine. We present a methodology for performing systematic analyses of multi-parameter interactions in such complex, multi-scale models. Human physiology models are often based on or inspired by Arthur Guyton's whole-body circulatory regulation model. Despite the significance of this model, it has not been the subject of a systematic and comprehensive sensitivity study. Therefore, we use this model as a case study for our methodology. Our analysis of the Guyton model reveals how the multitude of model parameters combine to affect the model dynamics, and how interesting combinations of parameters may be identified. It also includes a “virtual population” from which “virtual individuals” can be chosen, on the basis of exhibiting conditions similar to those of a real-world patient. This lays the groundwork for using the Guyton model for in silico exploration of pathophysiological states and treatment strategies. The results presented here illustrate several potential uses for the entire dataset of sensitivity results and the “virtual individuals” that we have generated, which are included in the supplementary material. More generally, the presented methodology is applicable to modern, more complex multi-scale physiological models

    Plasmacytoid Dendritic Cells Sequester High Prion Titres at Early Stages of Prion Infection

    Get PDF
    In most transmissible spongiform encephalopathies prions accumulate in the lymphoreticular system (LRS) long before they are detectable in the central nervous system. While a considerable body of evidence showed that B lymphocytes and follicular dendritic cells play a major role in prion colonization of lymphoid organs, the contribution of various other cell types, including antigen-presenting cells, to the accumulation and the spread of prions in the LRS are not well understood. A comprehensive study to compare prion titers of candidate cell types has not been performed to date, mainly due to limitations in the scope of animal bioassays where prohibitively large numbers of mice would be required to obtain sufficiently accurate data. By taking advantage of quantitative in vitro prion determination and magnetic-activated cell sorting, we studied the kinetics of prion accumulation in various splenic cell types at early stages of prion infection. Robust estimates for infectious titers were obtained by statistical modelling using a generalized linear model. Whilst prions were detectable in B and T lymphocytes and in antigen-presenting cells like dendritic cells and macrophages, highest infectious titers were determined in two cell types that have previously not been associated with prion pathogenesis, plasmacytoid dendritic (pDC) and natural killer (NK) cells. At 30 days after infection, NK cells were more than twice, and pDCs about seven-fold, as infectious as lymphocytes respectively. This result was unexpected since, in accordance to previous reports prion protein, an obligate requirement for prion replication, was undetectable in pDCs. This underscores the importance of prion sequestration and dissemination by antigen-presenting cells which are among the first cells of the immune system to encounter pathogens. We furthermore report the first evidence for a release of prions from lymphocytes and DCs of scrapie-infected mice ex vivo, a process that is associated with a release of exosome-like membrane vesicles

    Physiology and pathophysiology of the vasopressin-regulated renal water reabsorption

    Get PDF
    To prevent dehydration, terrestrial animals and humans have developed a sensitive and versatile system to maintain their water homeostasis. In states of hypernatremia or hypovolemia, the antidiuretic hormone vasopressin (AVP) is released from the pituitary and binds its type-2 receptor in renal principal cells. This triggers an intracellular cAMP signaling cascade, which phosphorylates aquaporin-2 (AQP2) and targets the channel to the apical plasma membrane. Driven by an osmotic gradient, pro-urinary water then passes the membrane through AQP2 and leaves the cell on the basolateral side via AQP3 and AQP4 water channels. When water homeostasis is restored, AVP levels decline, and AQP2 is internalized from the plasma membrane, leaving the plasma membrane watertight again. The action of AVP is counterbalanced by several hormones like prostaglandin E2, bradykinin, dopamine, endothelin-1, acetylcholine, epidermal growth factor, and purines. Moreover, AQP2 is strongly involved in the pathophysiology of disorders characterized by renal concentrating defects, as well as conditions associated with severe water retention. This review focuses on our recent increase in understanding of the molecular mechanisms underlying AVP-regulated renal water transport in both health and disease
    corecore