870 research outputs found

    A Formacao De Educadores Ambientais No Programa Cultivando Agua Boa Da Itaipu Binacional: A Participacao Como Um Elemento Desencadeador Da Governança Ambiental Comunitária

    Get PDF
    The present study shares data and information from the experience of Training Environmental Educators FEA of the Cultivando gua Boa CAB Program of Itaipu Binacional Based on participatory methodologies FEA seeks to stimulate reflection and collective action valuing local knowledge in building more sustainable communities FEA carries out the federal government s proposal synthesized in the Environmental Educator Training Program PROFEA whose creators are the Ministry of the Environment and the Ministry of Education This article presents the research results related to the processes of participation in the training of environmental educators and their contribution to the achievement of community environmental governance The adopted approach was qualitative and as methodological procedures bibliographic documentary and field research were used this was carried out based on observations and interview

    Functional Amyloid Formation within Mammalian Tissue

    Get PDF
    Amyloid is a generally insoluble, fibrous cross-β sheet protein aggregate. The process of amyloidogenesis is associated with a variety of neurodegenerative diseases including Alzheimer, Parkinson, and Huntington disease. We report the discovery of an unprecedented functional mammalian amyloid structure generated by the protein Pmel17. This discovery demonstrates that amyloid is a fundamental nonpathological protein fold utilized by organisms from bacteria to humans. We have found that Pmel17 amyloid templates and accelerates the covalent polymerization of reactive small molecules into melanin—a critically important biopolymer that protects against a broad range of cytotoxic insults including UV and oxidative damage. Pmel17 amyloid also appears to play a role in mitigating the toxicity associated with melanin formation by sequestering and minimizing diffusion of highly reactive, toxic melanin precursors out of the melanosome. Intracellular Pmel17 amyloidogenesis is carefully orchestrated by the secretory pathway, utilizing membrane sequestration and proteolytic steps to protect the cell from amyloid and amyloidogenic intermediates that can be toxic. While functional and pathological amyloid share similar structural features, critical differences in packaging and kinetics of assembly enable the usage of Pmel17 amyloid for normal function. The discovery of native Pmel17 amyloid in mammals provides key insight into the molecular basis of both melanin formation and amyloid pathology, and demonstrates that native amyloid (amyloidin) may be an ancient, evolutionarily conserved protein quaternary structure underpinning diverse pathways contributing to normal cell and tissue physiology

    Imaging noradrenergic influence on amyloid pathology in mouse models of Alzheimer’s disease

    Get PDF
    peer reviewedMolecular imaging aims towards the non-invasive characterization of disease-specific molecular alterations in the living organism in vivo. In that, molecular imaging opens a new dimension in our understanding of disease pathogenesis, as it allows the non-invasive determination of the dynamics of changes on the molecular level. IMAGING OF AD CHARACTERISTIC CHANGES BY microPET: The imaging technology being employed includes magnetic resonance imaging (MRI) and nuclear imaging as well as optical-based imaging technologies. These imaging modalities are employed together or alone for disease phenotyping, development of imaging-guided therapeutic strategies and in basic and translational research. In this study, we review recent investigations employing positron emission tomography and MRI for phenotyping mouse models of Alzheimer's disease by imaging. We demonstrate that imaging has an important role in the characterization of mouse models of neurodegenerative diseases

    Loss of Nmp4 optimizes osteogenic metabolism and secretion to enhance bone quality

    Get PDF
    A goal of osteoporosis therapy is to restore lost bone with structurally sound tissue. Mice lacking the transcription factor Nuclear Matrix Protein 4 (Nmp4, Zfp384, Ciz, ZNF384) respond to several classes of osteoporosis drugs with enhanced bone formation compared to wild type (WT) animals. Nmp4-/- mesenchymal stem/progenitor cells (MSPCs) exhibit an accelerated and enhanced mineralization during osteoblast differentiation. To address the mechanisms underlying this hyper-anabolic phenotype, we carried out RNA-sequencing and molecular and cellular analyses of WT and Nmp4-/- MSPCs during osteogenesis to define pathways and mechanisms associated with elevated matrix production. We determined that Nmp4 has a broad impact on the transcriptome during osteogenic differentiation, contributing to the expression of over 5,000 genes. Phenotypic anchoring of transcriptional data was performed for the hypothesis-testing arm through analysis of cell metabolism, protein synthesis and secretion, and bone material properties. Mechanistic studies confirmed that Nmp4-/- MSPCs exhibited an enhanced capacity for glycolytic conversion- a key step in bone anabolism. Nmp4-/- cells showed elevated collagen translation and secretion. Expression of matrix genes that contribute to bone material-level mechanical properties were elevated in Nmp4-/- cells, an observation that was supported by biomechanical testing of bone samples from Nmp4-/- and WT mice. We conclude that loss of Nmp4 increases the magnitude of glycolysis upon the metabolic switch, which fuels the conversion of the osteoblast into a super-secretor of matrix resulting in more bone with improvements in intrinsic quality

    Fluorescent N-arylaminonaphthalene sulfonate probes for amyloid aggregation of α-synuclein.

    Get PDF
    The deposition of fibrillar structures (amyloids) is characteristic of pathological conditions including Alzheimer's and Parkinson's diseases. The detection of protein deposits and the evaluation of their kinetics of aggregation are generally based on fluorescent probes such as thioflavin T and Congo red. In a search for improved fluorescence tools for studying amyloid formation, we explored the ability of N-arylaminonaphthalene sulfonate (NAS) derivatives to act as noncovalent probes of α-synuclein (AS) fibrillation, a process linked to Parkinson's disease and other neurodegenerative disorders. The compounds bound to fibrillar AS with micromolar K(d)s, and exhibited fluorescence enhancement, hyperchromism, and high anisotropy. We conclude that the probes experience a hydrophobic environment and/or restricted motion in a polar region. Time- and spectrally resolved emission intensity and anisotropy provided further information regarding structural features of the protein and the dynamics of solvent relaxation. The steady-state and time-resolved parameters changed during the course of aggregation. Compared with thioflavin T, NAS derivatives constitute more sensitive and versatile probes for AS aggregation, and in the case of bis-NAS detect oligomeric as well as fibrillar species. They can function in convenient, continuous assays, thereby providing useful tools for studying the mechanisms of amyloid formation and for high-throughput screening of factors inhibiting and/or reversing protein aggregation in neurodegenerative diseases

    Short acquisition time PET quantification using MRI-based pharmacokinetic parameter synthesis

    Get PDF
    Positron Emission Tomography (PET) with pharmacokinetic (PK) modelling is a quantitative molecular imaging technique, however the long data acquisition time is prohibitive in clinical practice. An approach has been proposed to incorporate blood flow information from Arterial Spin Labelling (ASL) Magnetic Resonance Imaging (MRI) into PET PK modelling to reduce the acquisition time. This requires the conversion of cerebral blood flow (CBF) maps, measured by ASL, into the relative tracer delivery parameter (R 1 ) used in the PET PK model. This was performed regionally using linear regression between population R 1 and ASL values. In this paper we propose a novel technique to synthesise R 1 maps from ASL data using a database with both R 1 and CBF maps. The local similarity between the candidate ASL image and those in the database is used to weight the propagation of R 1 values to obtain the optimal patient specific R 1 map. Structural MRI data is also included to provide information within common regions of artefact in ASL data. This methodology is compared to the linear regression technique using leave one out analysis on 32 subjects. The proposed method significantly improves regional R 1 estimation (p < 0.001), reducing the error in the pharmacokinetic modelling. Furthermore, it allows this technique to be extended to a voxel level, increasing the clinical utility of the images

    Development and Screening of Contrast Agents for In Vivo Imaging of Parkinson’s Disease

    Get PDF
    Purpose: The goal was to identify molecular imaging probes that would enter the brain, selectively bind to Parkinson’s disease (PD) pathology, and be detectable with one or more imaging modalities. Procedure: A library of organic compounds was screened for the ability to bind hallmark pathology in human Parkinson’s and Alzheimer’s disease tissue, alpha-synuclein oligomers and inclusions in two cell culture models, and alpha-synuclein aggregates in cortical neurons of a transgenic mouse model. Finally, compounds were tested for blood–brain barrier permeability using intravital microscopy. Results: Several lead compounds were identified that bound the human PD pathology, and some showed selectivity over Alzheimer’s pathology. The cell culture models and transgenic mouse models that exhibit alpha-synuclein aggregation did not prove predictive for ligand binding. The compounds had favorable physicochemical properties, and several were brain permeable. Conclusions: Future experiments will focus on more extensive evaluation of the lead compounds as PET ligands for clinical imaging of PD pathology

    Eighteenth century Yersinia pestis genomes reveal the long-term persistence of an historical plague focus

    Full text link
    © Bos et al. The 14th-18th century pandemic of Yersinia pestis caused devastating disease outbreaks in Europe for almost 400 years. The reasons for plague's persistence and abrupt disappearance in Europe are poorly understood, but could have been due to either the presence of now-extinct plague foci in Europe itself, or successive disease introductions from other locations. Here we present five Y. pestis genomes from one of the last European outbreaks of plague, from 1722 in Marseille, France. The lineage identified has not been found in any extant Y. pestis foci sampled to date, and has its ancestry in strains obtained from victims of the 14th century Black Death. These data suggest the existence of a previously uncharacterized historical plague focus that persisted for at least three centuries. We propose that this disease source may have been responsible for the many resurgences of plague in Europe following the Black Death
    corecore