20 research outputs found

    Oceanic control of decadal North Atlantic sea level pressure variability in winter

    Get PDF
    The predictability of winter‐time North Atlantic sea level pressure (SLP) variability has been investigated by means of an ensemble of integrations with an atmospheric general circulation model (AGCM) forced by observed sea surface temperatures (SSTs) for the period 1951–1994. The results imply that the SLP variations on timescales of several years to decades may be predictable, provided the SST anomalies themselves used to drive the AGCM can be predicted. The model, however, suffers from systematic errors, and the simulated centers of action are shifted relative to those observed

    Identification of regulatory variants associated with genetic susceptibility to meningococcal disease.

    Get PDF
    Non-coding genetic variants play an important role in driving susceptibility to complex diseases but their characterization remains challenging. Here, we employed a novel approach to interrogate the genetic risk of such polymorphisms in a more systematic way by targeting specific regulatory regions relevant for the phenotype studied. We applied this method to meningococcal disease susceptibility, using the DNA binding pattern of RELA - a NF-kB subunit, master regulator of the response to infection - under bacterial stimuli in nasopharyngeal epithelial cells. We designed a custom panel to cover these RELA binding sites and used it for targeted sequencing in cases and controls. Variant calling and association analysis were performed followed by validation of candidate polymorphisms by genotyping in three independent cohorts. We identified two new polymorphisms, rs4823231 and rs11913168, showing signs of association with meningococcal disease susceptibility. In addition, using our genomic data as well as publicly available resources, we found evidences for these SNPs to have potential regulatory effects on ATXN10 and LIF genes respectively. The variants and related candidate genes are relevant for infectious diseases and may have important contribution for meningococcal disease pathology. Finally, we described a novel genetic association approach that could be applied to other phenotypes

    Validation of the hydrological cycle of ERA 40

    No full text
    The European Centre for Medium-Range Weather Forecasts (ECMWF) has prepared a new 40 year reanalysis dataset (ERA40). Based on the observational data that were used, the whole ERA40 time period 1958-2001 can be divided into three parts: the satellite period 1989-2001 when a large amount of satellite data were assimilated into the ERA40 system, the pre-satellite period 1958-1972 when no satellite data were available, and the transition period 1973-1988 when the amount of satellite data that were assimilated increases with time. These three periods correspond also to the three streams which were produced separately during the ERA40 production timeframe. The ERA40 dataset is expected to be a major dataset for climate research. Within the ERA40 project, the MPI (Max Planck Institute for Meteorology) had the task to perform a validation of the hydrological cycle. Here, mainly the 6 hour forecasts were considered. The validation shows that the ERA40 hydrological cycle has changed in several respects compared to the previous ERA15 re-analysis. The hydrological cycle over land is generally improved compared to ERA15. These improvements comprise the eliminated cold biases in winter, the reduced occurrence of negative P-E (precipitation minus evapotranspiration) values, the removed dry bias in winter over Europe, and an improved representation of the snowpack. But the ERA40 hydrological cycle also has several deficiencies. The largest problem is the fact that the global water budget is not only unbalanced, but also P-E over the ocean is positive (and not negative as it should be) in the long term mean for the satellite and transition periods. This is related to an overestimation of precipitation over the ocean, especially in the tropics. The evapotranspiration over land is overestimated for many catchments, and, thus, the corresponding P-E is often underestimated. Using a simplified land surface scheme it was possible to derive improved values of evapotranspiration and runoff from ERA40 precipitation and 2m temperature that are consistent with the ERA40 data. The quality of the hydrological cycle differs between the periods as the biases in the hydrological cycle are strongly influenced by the different observing systems available in the three periods. Therefore, conclusions drawn for hydrological trends should be taken with great care

    Climate simulations and pollen data reveal the distribution and connectivity of temperate tree populations in eastern Asia during the Last Glacial Maximum

    Get PDF
    Publications on temperate deciduous tree refugia in Europe are abundant, but little is known about the patterns of temperate tree refugia in eastern Asia, an area where biodiversity survived Quaternary glaciations and which has the world's most diverse temperate flora. Our goal is to compare climate model simulations with pollen data in order to establish the location of glacial refugia during the Last Glacial Maximum (LGM). Limits in which temperate deciduous trees can survive are taken from the literature. The model outputs are first tested for the present by comparing climate models with published modern pollen data. As this method turned out to be satisfactory for the present, the same approach was used for the LGM. Climate model simulations (ECHAM5 T106), statistically further downscaled, are used to infer the temperate deciduous tree distribution during the LGM. These were compared with available fossil temperate tree pollen occurrences. The impact of the LGM on the eastern Asian climate was much weaker than on the European climate. The area of possible tree growth shifts only by about 2∘ to the south between the present and the LGM. This contributes to explaining the greater biodiversity of forests in eastern Asia compared to Europe. Climate simulations and the available, although fractional, fossil pollen data agree. Therefore, climate estimations can safely be used to fill areas without pollen data by mapping potential refugia distributions. The results show two important areas with population connectivity: the Yellow Sea emerged shelf and the southern Himalayas. These two areas were suitable for temperate deciduous tree growth, providing corridors for population migration and connectivity (i.e. less population fragmentation) in glacial periods. Many tree populations live in interglacial refugia, not glacial ones. The fact that the model simulation for the LGM fits so well with observed pollen distribution is another indication that the model used is good enough to also simulate the LGM period
    corecore