404 research outputs found

    Refined heart failure detection algorithm for improved clinical reliability of OptiVol alerts in CRT-D recipients

    Get PDF
       Background: The reliability of intrathoracic impedance monitoring for prediction of heart failure (HF) by implantable cardiac devices is controversial. Despite using additional device-based parameters described in the PARTNERS HF study, such as new onset of arrhythmias, abnormal autonomics, low biventricular pacing rate or patient activity level, the predictive power of device diagnostic algorithm is still in doubt. The objective of this study was to compare the device diagnostic algorithm described in the PARTNERS HF study to a newly developed algorithm applying refined diagnostic criteria. Methods: Fourty two patients were prospectively enrolled who had been implanted with an intrathoracic impedance and remote monitoring capable implantable cardiac defibrillator with a cardiac resychroniza­tion therapy (CRT-D) device in this observational study. If a remote OptiVolTM alert occurred, patients were checked for presence of HF symptoms. A new algorithm was derived from the original PARTNERS HF criteria, considering more sensitive cut-offs and changes of patterns of the device-based parameters. Results: During an average follow-up of 38 months, 722 remote transmissions were received. From the total of 128 transmissions with OptiVol alerts, 32 (25%) corresponded to true HF events. Upon multivariate discriminant analysis, low patient activity, high nocturnal heart rate, and low CRT pacing (< 90%) proved to be independent predictors of true HF events (all p < 0.01). Incorporating these three refined criteria in a new algorithm, the diagnostic yield of OptiVol was improved by increasing specific­ity from 37.5% to 86.5%, positive predictive value from 34.1% to 69.8% and area under the curve from 0.787 to 0.922 (p < 0.01), without a relevant loss in sensitivity (96.9% vs. 93.8%). Conclusions: A refined device diagnostic algorithm based on the parameters of low activity level, high nocturnal heart rate, and suboptimal biventricular pacing might improve the clinical reliability of OptiVol alerts.  

    Notions and subnotions in information structure

    Get PDF
    Three dimensions can be distinguished in a cross-linguistic account of information structure. First, there is the definition of the focus constituent, the part of the linguistic expression which is subject to some focus meaning. Second and third, there are the focus meanings and the array of structural devices that encode them. In a given language, the expression of focus is facilitated as well as constrained by the grammar within which the focus devices operate. The prevalence of focus ambiguity, the structural inability to make focus distinctions, will thus vary across languages, and within a language, across focus meanings

    Periodic Fluctuation of Tidal Volumes Further Improves Variable Ventilation in Experimental Acute Respiratory Distress Syndrome

    Get PDF
    In experimental acute respiratory distress syndrome (ARDS), random variation of tidal volumes (VT ) during volume controlled ventilation improves gas exchange and respiratory system mechanics (so-called stochastic resonance hypothesis). It is unknown whether those positive effects may be further enhanced by periodic VT fluctuation at distinct frequencies, also known as deterministic frequency resonance.We hypothesized that the positive effects of variable ventilation on lung functionmay be further amplified by periodic VT fluctuation at specific frequencies. In anesthetized and mechanically ventilated pigs, severe ARDS was induced by saline lung lavage and injurious VT (double-hit model). Animals were then randomly assigned to 6 h of protective ventilation with one of four VT patterns: (1) random variation of VT (WN); (2) P04, main VT frequency of 0.13Hz; (3) P10, main VT frequency of 0.05Hz; (4) VCV, conventional non-variable volume controlled ventilation. In groups with variable VT , the coefficient of variation was identical (30%). We assessed lung mechanics and gas exchange, and determined lung histology and inflammation. Compared to VCV, WN, P04, and P10 resulted in lower respiratory system elastance (63 ± 13 cm H2O/L vs. 50 ± 14 cm H2O/L, 48.4 ± 21 cm H2O/L, and 45.1 ± 5.9 cm H2O/L respectively, P < 0.05 all), but only P10 improved PaO2/FIO2 after 6 h of ventilation (318 ± 96 vs. 445 ± 110mm Hg, P < 0.05). Cycle-by-cycle analysis of lung mechanics suggested intertidal recruitment/de-recruitment in P10. Lung histologic damage and inflammation did not differ among groups. In this experimental model of severe ARDS, periodic VT fluctuation at a frequency of 0.05Hz improved oxygenation during variable ventilation, suggesting that deterministic resonance adds further benefit to variable ventilation

    A clinical prediction model for long-term functional outcome after traumatic spinal cord injury based on acute clinical and imaging factors.

    Get PDF
    To improve clinicians\u27 ability to predict outcome after spinal cord injury (SCI) and to help classify patients within clinical trials, we have created a novel prediction model relating acute clinical and imaging information to functional outcome at 1 year. Data were obtained from two large prospective SCI datasets. Functional independence measure (FIM) motor score at 1 year follow-up was the primary outcome, and functional independence (score ≥ 6 for each FIM motor item) was the secondary outcome. A linear regression model was created with the primary outcome modeled relative to clinical and imaging predictors obtained within 3 days of injury. A logistic model was then created using the dichotomized secondary outcome and the same predictor variables. Model validation was performed using a bootstrap resampling procedure. Of 729 patients, 376 met the inclusion criteria. The mean FIM motor score at 1 year was 62.9 (±28.6). Better functional status was predicted by less severe initial American Spinal Injury Association (ASIA) Impairment Scale grade, and by an ASIA motor score \u3e50 at admission. In contrast, older age and magnetic resonance imaging (MRI) signal characteristics consistent with spinal cord edema or hemorrhage predicted worse functional outcome. The linear model predicting FIM motor score demonstrated an R-square of 0.52 in the original dataset, and 0.52 (95% CI 0.52,0.53) across the 200 bootstraps. Functional independence was achieved by 148 patients (39.4%). For the logistic model, the area under the curve was 0.93 in the original dataset, and 0.92 (95% CI 0.92,0.93) across the bootstraps, indicating excellent predictive discrimination. These models will have important clinical impact to guide decision making and to counsel patients and families

    Measurement of negatively charged pion spectra in inelastic p+p interactions at plabp_{lab} = 20, 31, 40, 80 and 158 GeV/c

    Get PDF
    We present experimental results on inclusive spectra and mean multiplicities of negatively charged pions produced in inelastic p+p interactions at incident projectile momenta of 20, 31, 40, 80 and 158 GeV/c (s=\sqrt{s} = 6.3, 7.7, 8.8, 12.3 and 17.3 GeV, respectively). The measurements were performed using the large acceptance NA61/SHINE hadron spectrometer at the CERN Super Proton Synchrotron. Two-dimensional spectra are determined in terms of rapidity and transverse momentum. Their properties such as the width of rapidity distributions and the inverse slope parameter of transverse mass spectra are extracted and their collision energy dependences are presented. The results on inelastic p+p interactions are compared with the corresponding data on central Pb+Pb collisions measured by the NA49 experiment at the CERN SPS. The results presented in this paper are part of the NA61/SHINE ion program devoted to the study of the properties of the onset of deconfinement and search for the critical point of strongly interacting matter. They are required for interpretation of results on nucleus-nucleus and proton-nucleus collisions.Comment: Numerical results available at: https://edms.cern.ch/document/1314605 Updates in v3: Updated version, as accepted for publicatio

    NA61/SHINE facility at the CERN SPS: beams and detector system

    Get PDF
    NA61/SHINE (SPS Heavy Ion and Neutrino Experiment) is a multi-purpose experimental facility to study hadron production in hadron-proton, hadron-nucleus and nucleus-nucleus collisions at the CERN Super Proton Synchrotron. It recorded the first physics data with hadron beams in 2009 and with ion beams (secondary 7Be beams) in 2011. NA61/SHINE has greatly profited from the long development of the CERN proton and ion sources and the accelerator chain as well as the H2 beamline of the CERN North Area. The latter has recently been modified to also serve as a fragment separator as needed to produce the Be beams for NA61/SHINE. Numerous components of the NA61/SHINE set-up were inherited from its predecessors, in particular, the last one, the NA49 experiment. Important new detectors and upgrades of the legacy equipment were introduced by the NA61/SHINE Collaboration. This paper describes the state of the NA61/SHINE facility - the beams and the detector system - before the CERN Long Shutdown I, which started in March 2013

    Varespladib and cardiovascular events in patients with an acute coronary syndrome: the VISTA-16 randomized clinical trial

    Get PDF
    IMPORTANCE: Secretory phospholipase A2(sPLA2) generates bioactive phospholipid products implicated in atherosclerosis. The sPLA2inhibitor varespladib has favorable effects on lipid and inflammatory markers; however, its effect on cardiovascular outcomes is unknown. OBJECTIVE: To determine the effects of sPLA2inhibition with varespladib on cardiovascular outcomes. DESIGN, SETTING, AND PARTICIPANTS: A double-blind, randomized, multicenter trial at 362 academic and community hospitals in Europe, Australia, New Zealand, India, and North America of 5145 patients randomized within 96 hours of presentation of an acute coronary syndrome (ACS) to either varespladib (n = 2572) or placebo (n = 2573) with enrollment between June 1, 2010, and March 7, 2012 (study termination on March 9, 2012). INTERVENTIONS: Participants were randomized to receive varespladib (500 mg) or placebo daily for 16 weeks, in addition to atorvastatin and other established therapies. MAIN OUTCOMES AND MEASURES: The primary efficacy measurewas a composite of cardiovascular mortality, nonfatal myocardial infarction (MI), nonfatal stroke, or unstable angina with evidence of ischemia requiring hospitalization at 16 weeks. Six-month survival status was also evaluated. RESULTS: At a prespecified interim analysis, including 212 primary end point events, the independent data and safety monitoring board recommended termination of the trial for futility and possible harm. The primary end point occurred in 136 patients (6.1%) treated with varespladib compared with 109 patients (5.1%) treated with placebo (hazard ratio [HR], 1.25; 95%CI, 0.97-1.61; log-rank P = .08). Varespladib was associated with a greater risk of MI (78 [3.4%] vs 47 [2.2%]; HR, 1.66; 95%CI, 1.16-2.39; log-rank P = .005). The composite secondary end point of cardiovascular mortality, MI, and stroke was observed in 107 patients (4.6%) in the varespladib group and 79 patients (3.8%) in the placebo group (HR, 1.36; 95% CI, 1.02-1.82; P = .04). CONCLUSIONS AND RELEVANCE: In patients with recent ACS, varespladib did not reduce the risk of recurrent cardiovascular events and significantly increased the risk of MI. The sPLA2inhibition with varespladib may be harmful and is not a useful strategy to reduce adverse cardiovascular outcomes after ACS. TRIAL REGISTRATION: clinicaltrials.gov Identifier: NCT01130246. Copyright 2014 American Medical Association. All rights reserved

    Pion emission from the T2K replica target: method, results and application

    Get PDF
    The T2K long-baseline neutrino oscillation experiment in Japan needs precise predictions of the initial neutrino flux. The highest precision can be reached based on detailed measurements of hadron emission from the same target as used by T2K exposed to a proton beam of the same kinetic energy of 30 GeV. The corresponding data were recorded in 2007-2010 by the NA61/SHINE experiment at the CERN SPS using a replica of the T2K graphite target. In this paper details of the experiment, data taking, data analysis method and results from the 2007 pilot run are presented. Furthermore, the application of the NA61/SHINE measurements to the predictions of the T2K initial neutrino flux is described and discussed.Comment: updated version as published by NIM

    Improved circulating microparticle analysis in acid-citrate dextrose (ACD) anticoagulant tube.

    Get PDF
    INTRODUCTION: Recently extracellular vesicles (exosomes, microparticles also referred to as microvesicles and apoptotic bodies) have attracted substantial interest as potential biomarkers and therapeutic vehicles. However, analysis of microparticles in biological fluids is confounded by many factors such as the activation of cells in the blood collection tube that leads to in vitro vesiculation. In this study we aimed at identifying an anticoagulant that prevents in vitro vesiculation in blood plasma samples. MATERIALS AND METHODS: We compared the levels of platelet microparticles and non-platelet-derived microparticles in platelet-free plasma samples of healthy donors. Platelet-free plasma samples were isolated using different anticoagulant tubes, and were analyzed by flow cytometry and Zymuphen assay. The extent of in vitro vesiculation was compared in citrate and acid-citrate-dextrose (ACD) tubes. RESULTS: Agitation and storage of blood samples at 37 degrees C for 1hour induced a strong release of both platelet microparticles and non-platelet-derived microparticles. Strikingly, in vitro vesiculation related to blood sample handling and storage was prevented in samples in ACD tubes. Importantly, microparticle levels elevated in vivo remained detectable in ACD tubes. CONCLUSIONS: We propose the general use of the ACD tube instead of other conventional anticoagulant tubes for the assessment of plasma microparticles since it gives a more realistic picture of the in vivo levels of circulating microparticles and does not interfere with downstream protein or RNA analyses
    corecore