22 research outputs found

    Geologic Provinces Beneath the Greenland Ice Sheet Constrained by Geophysical Data Synthesis

    Get PDF
    Present understanding of Greenland's subglacial geology is derived mostly from interpolation of geologic mapping of its ice‐free margins and unconstrained by geophysical data. Here we refine the extent of its geologic provinces by synthesizing geophysical constraints on subglacial geology from seismic, gravity, magnetic and topographic data. North of 72°N, no province clearly extends across the whole island, leaving three distinct subglacial regions yet to be reconciled with margin geology. Geophysically coherent anomalies and apparent province boundaries are adjacent to the onset of faster ice flow at both Petermann Glacier and the Northeast Greenland Ice Stream. Separately, based on their subaerial expression, dozens of unusually long, straight and sub‐parallel subglacial valleys cross Greenland's interior and are not yet resolved by current syntheses of its subglacial topography

    Abbot Ice Shelf, structure of the Amundsen Sea continental margin and the southern boundary of the Bellingshausen Plate seaward of West Antarctica

    Get PDF
    Inversion of NASA Operation IceBridge airborne gravity over the Abbot Ice Shelf in West Antarctica for subice bathymetry defines an extensional terrain made up of east-west trending rift basins formed during the early stages of Antarctica/Zealandia rifting. Extension is minor, as rifting jumped north of Thurston Island early in the rifting process. The Amundsen Sea Embayment continental shelf west of the rifted terrain is underlain by a deeper, more extensive sedimentary basin also formed during rifting between Antarctica and Zealandia. A well-defined boundary zone separates the mildly extended Abbot extensional terrain from the deeper Amundsen Embayment shelf basin. The shelf basin has an extension factor, b, of 1.5–1.7 with 80–100 km of extension occurring across an area now 250 km wide. Following this extension, rifting centered north of the present shelf edge and proceeded to continental rupture. Since then, the Amundsen Embayment continental shelf appears to have been tectonically quiescent and shaped by subsidence, sedimentation, and the advance and retreat of the West Antarctic Ice Sheet. The Bellingshausen Plate was located seaward of the Amundsen Sea margin prior to incorporation into the Antarctic Plate at about 62 Ma. During the latter part of its independent existence, Bellingshausen plate motion had a clockwise rotational component relative to Antarctica producing convergence across the north-south trending Bellingshausen Gravity Anomaly structure at 94°W and compressive deformation on the continental slope between 94°W and 102°W. Farther west, the relative motion was extensional along an east-west trending zone occupied by the Marie Byrd Seamounts

    The International Bathymetric Chart of the Southern Ocean Version 2 (IBCSO v2)

    Get PDF
    The Southern Ocean surrounding Antarctica is a region that is key to a range of climatic and oceanographic processes with worldwide effects, and is characterised by high biological productivity and biodiversity. Since 2013, the International Bathymetric Chart of the Southern Ocean (IBCSO) has represented the most comprehensive compilation of bathymetry for the Southern Ocean south of 60°S. Recently, the IBCSO Project has combined its efforts with the Nippon Foundation – GEBCO Seabed 2030 Project supporting the goal of mapping the world’s oceans by 2030. New datasets initiated a second version of IBCSO (IBCSO v2). This version extends to 50°S (covering approximately 2.4 times the area of seafloor of the previous version) including the gateways of the Antarctic Circumpolar Current and the Antarctic circumpolar frontal systems. Due to increased (multibeam) data coverage, IBCSO v2 significantly improves the overall representation of the Southern Ocean seafloor and resolves many submarine landforms in more detail. This makes IBCSO v2 the most authoritative seafloor map of the area south of 50°S

    A fault-bounded palaeo-lake basin preserved beneath the Greenland Ice Sheet

    No full text
    Subglacial topography not only exerts strong controls on contemporary ice sheet dynamics, but also provides an important long-term record of landscape evolution pertaining to past glacial and interglacial conditions. In particular, the bed topography beneath the Greenland Ice Sheet bears the signatures of past processes of landscape evolution that record the development of the ice sheet since its inception. Here we present evidence from airborne radio-echo sounding, gravity, and magnetic data for an enclosed palaeo-lake basin situated beneath the ice sheet in northwest Greenland. Geomorphological analysis and hydrological modelling indicate that the basin once hosted a lake with a surface area of up to ∌7,100 km2 and a volume of up to ∌580 km3. The basin and associated topography control the organisation of a preserved palaeo-fluvial channel network, suggesting that the basin pre-dates widespread glaciation in northwest Greenland. We use flexural modelling to show that the morphology of the basin and surrounding topography is consistent with elastic plate flexure driven by mechanical displacement along a normal fault bounding the basin margin. Analysis of gravity and magnetic anomalies indicates that the basin contains a sedimentary infill up to ∌1.2 km thick, which may contain valuable records of past ice sheet extent and environmental conditions in northwest Greenland. We therefore propose that this newly identified palaeo-lake basin may be a promising target for future acquisition of ground-based active source seismic data and potential recovery of subglacial material by sub-ice drilling programs

    Basement topography and sediment thickness beneath Antarctica's Ross Ice Shelf imaged with airborne magnetic data

    No full text
    Depth to the magnetic basement beneath Antarctica's Ross Ice Shelf was determined from Werner deconvolution of ROSETTA-Ice airborne magnetic data. This process was constrained by offshore seismic data which was tied to the Ross Ice Shelf with Operation Ice Bridge IceBridge airborne magnetic data. Using a sub-ice shelf bathymetry model, we calculated the thickness of non-magnetic cover sediments above the basement. This dataset contains NetCDF grids, for both Ross Ice Shelf and Ross Embayment extents, of basement elevations and sediment thicknesses, as well as their accompanied upper and lower uncertainties. Also included are profiles of all ROSETTA-Ice flight lines, showing Werner deconvolution solutions and the resulting magnetic basement. Basement solutions before gridding are available in a text file. Code for the creation and processing of all the data here is available at Github, through the following link: https://doi.org/10.5281/zenodo.6499863

    Data_Sheet_1_Identifying Spatial Variability in Greenland's Outlet Glacier Response to Ocean Heat.pdf

    No full text
    <p>Although the Greenland ice sheet is losing mass as a whole, patterns of change on both local and regional scales are complex. Spatial statistics reveal large spatial variability of dynamic thinning rates of Greenland's marine-terminating glaciers between 2003 and 2009; only 18% of glacier thinning rates co-vary with neighboring glaciers. Most spatially-correlated thinning rates are clusters of stable glaciers in the Thule, Scoresby Sund, and Southwest regions. Conversely, where spatial-autocorrelation is low, individual glaciers are more strongly controlled by local, glacier-scale features than by regional influences. We investigate possible sources of local control of oceanic forcing by combining grounding line depths and ocean model output to estimate mean ocean heat content adjacent to 74 glaciers. Linear regression models indicate stronger correlation of dynamic thinning rates with ocean heat content compared to those with grounding line depths alone. The correlation between ocean heat and dynamic thinning is robust for all of Greenland except glaciers in the West, and strongest in the Southeast (R<sup>2</sup> ~ 0.81 ± 0.15, p = 0.009), implying that glaciers with deeper grounded termini here are most sensitive to changes in ocean forcing. In the Northwest, accounting for shallow sills in the regressions improves the correlation of water depth with glacial thinning, highlighting the need for comprehensive knowledge of fjord geometry.</p

    Antarctic ice shelf potentially stabilized by export of meltwater in surface river

    Get PDF
    Meltwater stored in ponds1 and crevasses can weaken and fracture ice shelves, triggering their rapid disintegration2. This ice-shelf collapse results in an increased flux of ice from adjacent glaciers3 and ice streams, thereby raising sea level globally4. However, surface rivers forming on ice shelves could potentially export stored meltwater and prevent its destructive effects. Here we present evidence for persistent active drainage networks—interconnected streams, ponds and rivers—on the Nansen Ice Shelf in Antarctica that export a large fraction of the ice shelf’s meltwater into the ocean. We find that active drainage has exported water off the ice surface through waterfalls and dolines for more than a century. The surface river terminates in a 130-metre-wide waterfall that can export the entire annual surface melt over the course of seven days. During warmer melt seasons, these drainage networks adapt to changing environmental conditions by remaining active for longer and exporting more water. Similar networks are present on the ice shelf in front of Petermann Glacier, Greenland, but other systems, such as on the Larsen C and Amery Ice Shelves, retain surface water at present. The underlying reasons for export versus retention remain unclear. Nonetheless our results suggest that, in a future warming climate, surface rivers could export melt off the large ice shelves surrounding Antarctica—contrary to present Antarctic ice-sheet models1, which assume that meltwater is stored on the ice surface where it triggers ice-shelf disintegration
    corecore