63 research outputs found

    Gender differences in hearts subjected to decreased NO-production and elevated blood pressure

    Get PDF
    Hypertension is one of the most important risk factors for heart failure in the general population. Hypertensive heart failure is associated with heart failure with preserved ejection fraction (HFpEF). Women have an increase proportion of HFpEF compared to men. Endothelial dysfunction thereby reduced NO production is proposed to play an important role in the pathophysiology of HFpEF. A suggested aetiology is related to cGMP´s important roles in myocardial cells. Females normally have higher constitutively activity of NOS and thereby NO production, an important stimulator of sGC and thereby cGMP. PKG1 is a cGMP-regulated protein that has cardio protective effects in rodents. In this experimental study we wanted to investigate gender differences when NOS was blocked. Adult rats, males, females and ovariectomized females were treated with L-NAME in drinking water for 4 weeks. Blood pressure was measured, and hearts investigated by echocardiography, histology and gene expression analysis at endpoint. MAP increased in all treatment groups; the increase was significantly larger in Males and Females Ovariectomized (OVX) compared to Females. Histological analysis of collagen showed no increase in interstitial or perivascular collagen. Gene expression analysis showed an increase in fibrosis genes, ANF and BNP, most pronounced in Females OVX and intact Females. There was also an isoform shift of MHC, more pronounced in Females OVX. Echocardiography showed a higher relative increase in LV mass in intact Females than Males. There was an increase in LV mass in all treatment groups, but no changes in diastolic or systolic diameter, suggesting concentric remodeling. There were no clinical signs of heart failure in treatment groups and cardiac output was maintained.This study confirm that with loss of NO production females developed more hypertrophy than males independent of blood pressure. Females also tended to have more extreme changes in expression of genes related to heart failure compared to males

    The Ambivalence of Connexin43 Gap Peptides in Cardioprotection of the Isolated Heart against Ischemic Injury

    Get PDF
    The present study investigates infarct-reducing effects of blocking ischemia-induced opening of connexin43 hemichannels using peptides Gap19, Gap26 or Gap27. Cardioprotection by ischemic preconditioning (IPC) and Gap peptides was compared, and combined treatment was tested in isolated, perfused male rat hearts using function and infarct size after global ischemia, high-resolution respirometry of isolated mitochondrial and peptide binding kinetics as endpoints. The Gap peptides reduced infarct size significantly when given prior to ischemia plus at reperfusion (Gap19 76.2 ± 2.7, Gap26 72.9 ± 5.8 and Gap27 71.9 ± 5.8% of untreated control infarcts, mean ± SEM). Cardioprotection was lost when Gap26, but not Gap27 or Gap19, was combined with triggering IPC (IPC 73.4 ± 5.5, Gap19-IPC 60.9 ± 5.1, Gap26-IPC 109.6 ± 7.8, Gap27-IPC 56.3 ± 8.0% of untreated control infarct). Binding stability of peptide Gap26 to its specific extracellular loop sequence (EL2) of connexin43 was stronger than Gap27 to its corresponding loop EL1 (dissociation rate constant Kd 0.061 ± 0.004 vs. 0.0043 ± 0.0001 s−1 , mean ± SD). Mitochondria from IPC hearts showed slightly but significantly reduced respiratory control ratio (RCR). In vitro addition of Gap peptides did not significantly alter respiration. If transient hemichannel activity is part of the IPC triggering event, inhibition of IPC triggering stimuli might limit the use of cardioprotective Gap peptides

    Tezosentan reduces the microvascular filtration coefficient in isolated lungs from rats subjected to cecum ligation and puncture

    Get PDF
    INTRODUCTION: We recently demonstrated that the non-selective endothelin-1 (ET-1) receptor blocker tezosentan antagonizes ovine acute lung injury (ALI) following infusion of endotoxin or ET-1 by reducing the enhanced lung microvascular pressure, although we could not exclude the possibility of a simultaneous decline in microvascular permeability. In the present study, our aim was to find out if tezosentan reverses the rise in microvascular filtration coefficient (Kfc) in rat lungs that have been isolated and perfused 12 h after cecum ligation and puncture (CLP) or infusion of ET-1. METHODS: Wistar rats (n = 42) were subjected to CLP. Postoperatively, rats were randomized to a CLP group (n = 7) and a CLP + tezosentan group (n = 7); the latter received tezosentan 30 mg/kg. A sham-operated group (n = 5) underwent laparotomy without CLP. Twelve hours postoperatively, the lungs were isolated and perfused with blood from similarly treated rats that also were used to assess plasma concentration of ET-1 and protein kinase Cα (PKCα) in lung tissue. Additionally, isolated blood perfused lungs from healthy rats were randomized to a control group (n = 8), an ET-1 group (n = 7) subjected to pulmonary arterial injection of ET-1 10 nM, and an ET-1 + tezosentan group (n = 7) that received tezosentan 30 mg/kg. All lung preparations received papaverine 0.1 μg/kg added to the perfusate for vasoplegia. Pulmonary hemodynamic variables, Kfc and lung compliance (C(L)) were assessed. RESULTS: After CLP, the plasma concentration of ET-1 increased. Papaverine abolished the vasoconstrictor response to ET-1 and the pulmonary vascular pressures remained close to baseline throughout the experiments. Both CLP and injection of ET-1 caused significant changes in Kfc and C(L )that were prevented in tezosentan-treated rats. Compared to sham-operated animals, CLP increased the content of PKCα by 50% and 70% in the cytosolic and the membrane fractions of lung tissue homogenates, respectively. Tezosentan prevented the upregulation of PKCα in the membrane fraction. CONCLUSION: In rat lungs isolated and perfused after CLP, tezosentan precludes both the increase in Kfc and the upregulation of PKCα in the membrane fraction of lung tissue

    Cardiac adaptation to hypertension in adult female Dahl salt-sensitive rats is dependent on ovarian function, but loss of ovarian function does not predict early maladaptation

    Get PDF
    Aim of study was to examine experimentally the adult female hypertensive heart in order to determine the role of ovary function in the response of the heart to salt-dependent hypertension. Dahl salt-sensitive rats, age 12 weeks, with/without ovariectomy were fed a standard (0.3% NaCl) or high-salt diet (8%) for 16 weeks. Mean arterial blood pressure monitored noninvasively in conscious state increased significantly by high salt. Echocardiography was performed at baseline and endpoint. Heart function and molecular changes were evaluated at endpoint by left ventricle catheterization, by sirius red staining for collagen and by gene expression using quantitative RT-PCR for selected genes. At endpoint, significant concentric hypertrophy was present with high salt. Increase in relative wall thickening with high salt compared to normal diet was more pronounced with intact ovaries (0.33 0.02 and 0.57 0.04 vs. 0.29 0.00 and 0.46 0.03) as was the reduction in midwall fractional shortening (20 0.6 and 14 2 vs. 19 0.9 and 18 1). Ovariectomy increased stroke volume and decreased the ratio of mitral peak velocity of early filling (E) to early diastolic mitral annular velocity (E0 ) (E/E’ ratio) when compared to hearts from intact rats. High salt increased expression of collagen I and III genes and perivascular collagen in the heart slightly, but % interstitial collagen by sirius red staining remained unchanged in intact rats and decreased significantly by ovariectomy. Added volume load but not deterioration of function or structure characterized the nonfailing hypertensive heart of salt-sensitive females ovariectomized at mature age when compared to corresponding intact females

    Tezosentan-induced attenuation of lung injury in endotoxemic sheep is associated with reduced activation of protein kinase C

    Get PDF
    INTRODUCTION: Studies in vitro reveal that endothelin-1 (ET-1) activates the α isoform of protein kinase C (PKC-α) in cultures of endothelial cells, thereby deranging cellular integrity. Sepsis and endotoxemia are associated with increased plasma concentrations of ET-1 that induce acute lung injury (ALI). We recently reported that non-selective ET-1 receptor blockade attenuates ALI in sheep by reducing the endotoxin-induced increase in extravascular lung water index (EVLWI). The aim of this study was to find out whether this attenuation is associated with reduced translocation of PKC-α from the cytosolic to the membrane fraction of lung tissue homogenate. METHODS: Seventeen awake, instrumented sheep were randomly assigned to a sham-operated group (n = 3), a lipopolysaccharide (LPS) group (n = 7) receiving an intravenous infusion of Escherichia coli 15 ng/kg per min for 24 hours, and a tezosentan group (n = 7) subjected to LPS and, from 4 hours, an intravenous injection of tezosentan 3 mg/kg followed by infusion at 1 mg/kg per hour for the reminder of the experiment. Pulmonary micro-occlusion pressure (Pmo), EVLWI, plasma concentrations of ET-1, tumor necrosis factor-a (TNF-a), and interleukin-8 (IL-8) were determined every 4 hours. Western blotting was used to assess PKC-α. RESULTS: In non-treated sheep a positive correlation was found between the plasma concentration of ET-1 and Pmo in the late phase of endotoxemia (12 to 24 hours). A positive correlation was also noticed between Pmo and EVLWI in the LPS and the LPS plus tezosentan groups, although the latter was significantly reduced in comparison with LPS alone. In both endotoxemic groups, plasma concentrations of ET-1, TNF-α, and IL-8 increased. In the LPS group, the cytosolic fraction of PKC-α decreased by 75% whereas the membrane fraction increased by 40% in comparison with the sham-operated animals. Tezosentan completely prevented the changes in PKC-α in both the cytosolic and the membrane fractions, concomitantly causing a further increase in the plasma concentrations of ET-1, TNF-α, and IL-8. CONCLUSION: In endotoxemic sheep, ET-1 receptor blockade alleviates lung injury as assessed by a decrease in EVLWI paralleled by a reduction in Pmo and the prevention of activation of PKC-α

    Overweight modifies the longitudinal association between uric acid and some components of the metabolic syndrome: The Tromsø Study

    Get PDF
    Published version. Source at http://dx.doi.org/10.1186/s12872-016-0265-8 Background: Elevated uric acid (UA) is associated with the presence of the metabolic syndrome (MetS). In a prospective cohort study, we assessed whether baseline and longitudinal change in UA were risk factors for development of MetS and its individual components. Methods: We included 3087 women and 2996 men who had UA measured in the population based Tromsø Study 1994–95. The participants were stratified according to body mass index (BMI). Endpoints were MetS and each component of the syndrome after 7 years, according to the revised National Cholesterol Education Program’s Adult Treatment Panel III (NCEP-ATP III) definition. Results: Multiple logistic regression analyses showed that higher baseline UA was associated with higher odds of developing elevated blood pressure in overweight subjects (BMI ≥ 25 kg/m2, odds ratio [OR] per 59 μmol/L UA increase 1.44, 95 % confidence interval [CI] = 1.17–1.77, P = 0.001), but not in normal-weight subjects (BMI Conclusion: Increased levels of baseline UA independently predicted development of elevated blood pressure and higher fasting glycemia in the overweight, but not the normal-weight subjects. Baseline UA and longitudinal increase in UA over 7 years was associated with the development of MetS in all subjects. Whether increased UA should be treated differently in normal-weight and overweight persons needs further study

    Recombinant human activated protein C attenuates endotoxin-induced lung injury in awake sheep

    Get PDF
    Introduction: Acute lung injury often complicates severe sepsis. In Gram-negative sepsis, bacterial endotoxin activates both coagulation and inflammation. Enhanced lung vascular pressures and permeability, increased extravascular lung water content and deteriorated gas exchange characterize ovine endotoxin-induced lung injury, a frequently used model of acute lung injury. Recombinant human activated protein C (rhAPC), with its anticoagulant, anti-inflammatory, fibrinolytic and antiapoptotic effects, reportedly reduces the respiratordependent days and the mortality of patients with severe sepsis. We speculate whether rhAPC antagonizes endotoxin-induced lung injury in sheep. Methods: Two groups of sheep were exposed to Escherichia coli endotoxin (lipopolysaccharide) 15 ng/kg/minute intravenously from 0 to 24 hours; one group received only lipopolysaccharide throughout (n = 8), and the other group received lipopolysaccharide in combination with rhAPC 24 μg/ kg/hour from 4 to 24 hours (n = 9). In addition, one group received rhAPC as above as the only intervention (n = 4), and four sham-operated sheep were used for determination of the α and ε isoforms of protein kinase C in pulmonary tissue. Data were assessed by one-way analysis of variance for repeated measurements. Biochemical data were analyzed using Student's t test, or using the Mann–Whitney U test when appropriate. Results: Infusion of endotoxin caused lung injury, manifested by increments in pulmonary artery pressure, in pulmonary microocclusion pressure, in pulmonary vascular downstream resistance, in pulmonary vascular permeability index, in extravascular lung water index and in deterioration of oxygenation that were all attenuated by infusion of rhAPC. Endotoxemia led to changes in inflammation and coagulation, including pulmonary neutrophil accumulation paralleled by increased TNFα and decreased protein C and fibrinogen in animal plasma, which all improved following infusion of rhAPC. Moreover, rhAPC prevented the translocation of protein kinase C α and ε isoforms from the cytosolic fraction of lung tissue extracts. Conclusion: In awake sheep, rhAPC alleviates endotoxininduced lung injury – as characterized by improvements of oxygenation, coagulation and inflammation, as well as by reversal of pulmonary hemodynamic and volumetric changes

    Epigenomic and transcriptomic approaches in the post-genomic era: path to novel targets for diagnosis and therapy of the ischemic heart?

    Get PDF
    Despite advances in myocardial reperfusion therapies, acute myocardial ischemia/reperfusion injury and consequent ischemic heart failure represent the number one cause of morbidity and mortality in industrialized societies. Although different therapeutic interventions have been shown beneficial in preclinical settings, an effective cardioprotective or regenerative therapy has yet to be successfully introduced in the clinical arena. Given the complex pathophysiology of the ischemic heart, large scale, unbiased, global approaches capable of identifying multiple branches of the signaling networks activated in the ischemic/reperfused heart might be more successful in the search for novel diagnostic or therapeutic targets. High-throughput techniques allow high-resolution, genome-wide investigation of genetic variants, epigenetic modifications and associated gene expression profiles. Platforms such as proteomics and metabolomics (not described here in detail) also offer simultaneous readouts of hundreds of proteins and metabolites. Isolated omics analyses usually provide Big Data requiring large data storage, advanced computational resources and complex bioinformatics tools. The possibility of integrating different omics approaches gives new hope to better understand the molecular circuitry activated by myocardial ischemia, putting it in the context of the human "diseasome".Since modifications of cardiac gene expression have been consistently linked to pathophysiology of the ischemic heart, the integration of epigenomic and transcriptomic data seems a promising approach to identify crucial disease networks. Thus, the scope of this Position Paper will be to highlight potentials and limitations of these approaches, and to provide recommendations to optimize the search for novel diagnostic or therapeutic targets for acute ischemia/reperfusion injury and ischemic heart failure in the post-genomic era

    Novel targets and future strategies for acute cardioprotection: Position Paper of the European Society of Cardiology Working Group on Cellular Biology of the Heart

    Get PDF
    Ischaemic heart disease and the heart failure that often results, remain the leading causes of death and disability in Europe and worldwide. As such, in order to prevent heart failure and improve clinical outcomes in patients presenting with an acute ST-segment elevation myocardial infarction and patients undergoing coronary artery bypass graft surgery, novel therapies are required to protect the heart against the detrimental effects of acute ischaemia/reperfusion injury. During the last three decades, a wide variety of ischaemic conditioning strategies and pharmacological treatments have been tested in the clinic - however, their translation from experimental to clinical studies for improving patient outcomes has been both challenging and disappointing. Therefore, in this Position Paper of the European Society of Cardiology Working Group on Cellular Biology of the Heart, we critically analyse the current state of ischaemic conditioning in both the experimental and clinical settings, provide recommendations for improving its translation into the clinical setting, and highlight novel therapeutic targets and new treatment strategies for reducing acute myocardial ischaemia/reperfusion injury

    The loss of a shared lifetime: a qualitative study exploring spouses' experiences of losing couplehood withtheir partner with dementia living in institutional care

    Get PDF
    Målet med artikkelen er å utforske og beskrive ektefellenes opplevelser av å miste samlivet med sin demens-rammede partner. Til tross for tap og opplevelser av diskontinuitet på grunn av kognitiv svikt forårsaket av demens, er følelser av tilhørighet og gjensidighet i nære relasjoner fortsatt avgjørende for mange par. Men disse erfaringene til ektefeller med partnere som bor i institusjon er ikke godt dokumentert og er dermed i fokus i denne studien. En konstruktivistisk grounded theory tilnærming ble brukt til å fange opp de relasjonelle prosessene beskrevet av ektefellene. Intervjuer ble gjennomført med 10 ektefeller av demens-rammet personer som bor i institusjon. Ektefellenes opplevelser av å miste samlivet var hovedsakelig knyttet til separasjon fra partneren og følelsen av å være alene. Men disse erfaringene ikke synes å være konstant; korte glimt av samhørighet, gjensidighet og gjensidig avhengighet har bidratt til en følelse av samliv, selv om disse var bare forbigående. Ektefellenes opplevelser av å miste samlivet var dynamisk. Ektefellene vaklet mellom følelser av tap og følelser av tilhørighet, avhengig av forholdene som kjennetegner øyeblikket. Helsepersonell må erkjenne alvorlighetsgraden av noen ektefellenes opplevelser av å miste samlivet med ektefellen, og være klar over hvordan disse erfaringene kan variere og være situasjonsavhengig
    corecore