80 research outputs found

    Making sense of multivariate community responses in global change experiments

    Get PDF
    Ecological communities are being impacted by global change worldwide. Experiments are a powerful tool to understand how global change will impact communities by comparing control and treatment replicates. Communities consist of multiple species, and their associated abundances make multivariate methods an effective approach to study community compositional differences between control and treated replicates. Dissimilarity metrics are a commonly employed multivariate measure of compositional differences; however, while highly informative, dissimilarity metrics do not elucidate the specific ways in which communities differ. Integrating two multivariate methods, dissimilarity metrics and rank abundance curves (RACs), have the potential to detect complex differences based on dissimilarity metrics and detail the how these differences came about through differences in richness, evenness, species ranks, or species identity. Here we use a database of 106 global change experiments located in herbaceous ecosystems and explore how patterns of ordinations based on dissimilarity metrics relate to RAC-based differences. We find that combining dissimilarity metrics alongside RAC-based measures clarifies how global change treatments are altering communities. We find that when there is no difference in community composition (no distance between centroids of control and treated replicates), there are rarely differences in species ranks or species identities and more often differences in richness or evenness alone. In contrast, when there are differences between centroids of control and treated replicates, this is most often associated with differences in ranks either alone or co-occurring with differences in richness, evenness, or species identities. We suggest that integrating these two multivariate measures of community composition results in a deeper understanding of how global change impacts communities

    Global change effects on plant communities are magnified by time and the number of global change factors imposed

    Get PDF
    Komatsu, Kimberly J. Smithsonian Environmental Research Center, Edgewater. United States.Avolio, Meghan L. Johns Hopkins University. Department of Earth and Planetary Sciences. Baltimore, United States.Lemoine, Nathan P. Marquette University. Department of Biological Sciences. Milwaukee, United States.Chaneton, Enrique José. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA). Buenos Aires, Argentina.Chaneton, Enrique José. CONICET – Universidad de Buenos Aires. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA). Buenos Aires, Argentina.Tognetti, Pedro Maximiliano. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA). Buenos Aires, Argentina.Tognetti, Pedro Maximiliano. CONICET – Universidad de Buenos Aires. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA). Buenos Aires, Argentina.Yahdjian, María Laura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA). Buenos Aires, Argentina.Yahdjian, María Laura. CONICET – Universidad de Buenos Aires. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA). Buenos Aires, Argentina.Isbell, Forest. University of Minnesota. Department of Ecology, Evolution and Behavior. Saint Paul, United States.Grman, Emily. Eastern Michigan University. Department of Biology. Ypsilanti, United States.17867–17873Global change drivers (GCDs) are expected to alter community structure and consequently, the services that ecosystems provide. Yet, few experimental investigations have examined effects of CDs on plant community structure across multiple ecosystem types, and those that do exist present conflicting patterns. In an unprecedented global synthesis of over 100 experiments that manipulated factors linked to GCDs, we show that herbaceous plant community responses depend on experimental manipulation length and number of factors manipulated. We found that plant communities are fairly resistant to experimentally manipulated GCDs in the short term ( minor to 10 y). In contrast, long-term (major or equal to 10 y) experiments show increasing community divergence of treatments from control conditions. Surprisingly, these community responses occurred with similar frequency across the GCD types manipulated in our database. However, community responses were more common when 3 or more GCDs were simultaneously manipulated, suggesting the emergence of additive or synergistic effects of multiple drivers, particularly over long time periods. In half of the cases, GCD manipulations caused a difference in community composition without a corresponding species richness difference, indicating that species reordering or replacement is an important mechanism of community responses to GCDs and should be given greater consideration when examining consequences of GCDs for the biodiversity–ecosystem function relationship. Human activities are currently driving unparalleled global changes worldwide. Our analyses provide the most comprehensive evidence to date that these human activities may have widespread impacts on plant community composition globally, which will increase in frequency over time and be greater in areas where communities face multiple GCDs simultaneously

    General Destabilizing Effects of Eutrophication on Grassland Productivity at Multiple Spatial Scales

    Get PDF
    Eutrophication is a widespread environmental change that usually reduces the stabilizing effect of plant diversity on productivity in local communities. Whether this effect is scale dependent remains to be elucidated. Here, we determine the relationship between plant diversity and temporal stability of productivity for 243 plant communities from 42 grasslands across the globe and quantify the effect of chronic fertilization on these relationships. Unfertilized local communities with more plant species exhibit greater asynchronous dynamics among species in response to natural environmental fluctuations, resulting in greater local stability (alpha stability). Moreover, neighborhood communities that have greater spatial variation in plant species composition within sites (higher beta diversity) have greater spatial asynchrony of productivity among communities, resulting in greater stability at the larger scale (gamma stability). Importantly, fertilization consistently weakens the contribution of plant diversity to both of these stabilizing mechanisms, thus diminishing the positive effect of biodiversity on stability at differing spatial scales. Our findings suggest that preserving grassland functional stability requires conservation of plant diversity within and among ecological communities

    High-resolution mass models of dwarf galaxies from LITTLE THINGS

    Get PDF
    We present high-resolution rotation curves and mass models of 26 dwarf galaxies from LITTLE THINGS. LITTLE THINGS is a high-resolution Very Large Array HI survey for nearby dwarf galaxies in the local volume within 11 Mpc. The rotation curves of the sample galaxies derived in a homogeneous and consistent manner are combined with Spitzer archival 3.6 micron and ancillary optical U, B, and V images to construct mass models of the galaxies. We decompose the rotation curves in terms of the dynamical contributions by baryons and dark matter halos, and compare the latter with those of dwarf galaxies from THINGS as well as Lambda CDM SPH simulations in which the effect of baryonic feedback processes is included. Being generally consistent with THINGS and simulated dwarf galaxies, most of the LITTLE THINGS sample galaxies show a linear increase of the rotation curve in their inner regions, which gives shallower logarithmic inner slopes alpha of their dark matter density profiles. The mean value of the slopes of the 26 LITTLE THINGS dwarf galaxies is alpha =-0.32 +/- 0.24 which is in accordance with the previous results found for low surface brightness galaxies (alpha = -0.2 +/- 0.2) as well as the seven THINGS dwarf galaxies (alpha =-0.29 +/- 0.07). However, this significantly deviates from the cusp-like dark matter distribution predicted by dark-matter-only Lambda CDM simulations. Instead our results are more in line with the shallower slopes found in the Lambda CDM SPH simulations of dwarf galaxies in which the effect of baryonic feedback processes is included. In addition, we discuss the central dark matter distribution of DDO 210 whose stellar mass is relatively low in our sample to examine the scenario of inefficient supernova feedback in low mass dwarf galaxies predicted from recent Lambda SPH simulations of dwarf galaxies where central cusps still remain.Peer reviewe

    Nothing lasts forever: Dominant species decline under rapid environmental change in global grasslands

    Get PDF
    Dominance often indicates one or a few species being best suited for resource capture and retention in a given environment. Press perturbations that change availability of limiting resources can restructure competitive hierarchies, allowing new species to capture or retain resources and leaving once dominant species fated to decline. However, dominant species may maintain high abundances even when their new environments no longer favour them due to stochastic processes associated with their high abundance, impeding deterministic processes that would otherwise diminish them. Here, we quantify the persistence of dominance by tracking the rate of decline in dominant species at 90 globally distributed grassland sites under experimentally elevated soil nutrient supply and reduced vertebrate consumer pressure. We found that chronic experimental nutrient addition and vertebrate exclusion caused certain subsets of species to lose dominance more quickly than in control plots. In control plots, perennial species and species with high initial cover maintained dominance for longer than annual species and those with low initial cover respectively. In fertilized plots, species with high initial cover maintained dominance at similar rates to control plots, while those with lower initial cover lost dominance even faster than similar species in controls. High initial cover increased the estimated time to dominance loss more strongly in plots with vertebrate exclosures than in controls. Vertebrate exclosures caused a slight decrease in the persistence of dominance for perennials, while fertilization brought perennials' rate of dominance loss in line with those of annuals. Annual species lost dominance at similar rates regardless of treatments. Synthesis. Collectively, these results point to a strong role of a species' historical abundance in maintaining dominance following environmental perturbations. Because dominant species play an outsized role in driving ecosystem processes, their ability to remain dominant—regardless of environmental conditions—is critical to anticipating expected rates of change in the structure and function of grasslands. Species that maintain dominance while no longer competitively favoured following press perturbations due to their historical abundances may result in community compositions that do not maximize resource capture, a key process of system responses to global change.Fil: Wilfahrt, Peter A.. University of Minnesota; Estados UnidosFil: Seabloom, Eric. University of Minnesota; Estados UnidosFil: Bakker, Jonathan. University of Washington; Estados UnidosFil: Biederman, Lori. Iowa State University; Estados UnidosFil: Bugalho, Miguel N.. Universidade Nova de Lisboa; PortugalFil: Cadotte, Marc W.. University of Toronto–Scarborough; Estados UnidosFil: Caldeira, Maria C.. Universidade Nova de Lisboa; PortugalFil: Catford, Jane A.. University of Melbourne; AustraliaFil: Chen, Qingqing. Peking University; China. German Centre for Integrative Biodiversity Research; AlemaniaFil: Donohue, Ian. Trinity College Dublin; IrlandaFil: Ebeling, Anne. University of Jena; AlemaniaFil: Eisenhauer, Nico. German Centre for Integrative Biodiversity Research; Alemania. Leipzig University; AlemaniaFil: Haider, Sylvia. Martin Luther University Halle-Wittenberg; Alemania. Leuphana University of Lüneburg; AlemaniaFil: Heckman, Robert W.. University of Texas; Estados Unidos. United States Forest Service; Estados UnidosFil: Jentsch, Anke. University of Bayreuth; AlemaniaFil: Koerner, Sally E.. University of North Carolina Greensboro; Estados UnidosFil: Komatsu, Kimberly J.. University of North Carolina Greensboro; Estados UnidosFil: Laungani, Ramesh. Poly Prep Country Day School; Estados UnidosFil: MacDougall, Andrew. University of Guelph; CanadáFil: Smith, Nicholas G.. Texas Tech University; Estados UnidosFil: Stevens, Carly J.. Lancaster University; Reino UnidoFil: Sullivan, Lauren L.. Michigan State University; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Tedder, Michelle. University of KwaZulu-Natal; SudáfricaFil: Peri, Pablo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigaciones y Transferencia de Santa Cruz. Universidad Tecnológica Nacional. Facultad Regional Santa Cruz. Centro de Investigaciones y Transferencia de Santa Cruz. Universidad Nacional de la Patagonia Austral. Centro de Investigaciones y Transferencia de Santa Cruz; ArgentinaFil: Tognetti, Pedro Maximiliano. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Veen, Ciska. Netherlands Institute of Ecology; Países BajosFil: Wheeler, George. University of Nebraska-Lincoln; Estados UnidosFil: Young, Alyssa L.. University of North Carolina Greensboro; Estados UnidosFil: Young, Hillary. University of California; Estados UnidosFil: Borer, Elizabeth. University of Minnesota; Estados Unido

    The physical scale of the far-infrared emission in the most luminous submillimetre galaxies II: evidence for merger-driven star formation

    Get PDF
    We present high-resolution 345 GHz interferometric observations of two extreme luminous (L_{IR}>10^{13} L_sun), submillimetre-selected galaxies (SMGs) in the COSMOS field with the Submillimeter Array (SMA). Both targets were previously detected as unresolved point-sources by the SMA in its compact configuration, also at 345 GHz. These new data, which provide a factor of ~3 improvement in resolution, allow us to measure the physical scale of the far-infrared in the submillimetre directly. The visibility functions of both targets show significant evidence for structure on 0.5-1 arcsec scales, which at z=1.5 translates into a physical scale of 5-8 kpc. Our results are consistent with the angular and physical scales of two comparably luminous objects with high-resolution SMA followup, as well as radio continuum and CO sizes. These relatively compact sizes (<5-10 kpc) argue strongly for merger-driven starbursts, rather than extended gas-rich disks, as the preferred channel for forming SMGs. For the most luminous objects, the derived sizes may also have important physical consequences; under a series of simplifying assumptions, we find that these two objects in particular are forming stars close to or at the Eddington limit for a starburst.Comment: 9 pages, 3 Figures, submitted to MNRA

    Expert perspectives on global biodiversity loss and its drivers and impacts on people

    Full text link
    Despite substantial progress in understanding global biodiversity loss, major taxonomic and geographic knowledge gaps remain. Decision makers often rely on expert judgement to fill knowledge gaps, but are rarely able to engage with sufficiently large and diverse groups of specialists. To improve understanding of the perspectives of thousands of biodiversity experts worldwide, we conducted a survey and asked experts to focus on the taxa and freshwater, terrestrial, or marine ecosystem with which they are most familiar. We found several points of overwhelming consensus (for instance, multiple drivers of biodiversity loss interact synergistically) and important demographic and geographic differences in specialists’ perspectives and estimates. Experts from groups that are underrepresented in biodiversity science, including women and those from the Global South, recommended different priorities for conservation solutions, with less emphasis on acquiring new protected areas, and provided higher estimates of biodiversity loss and its impacts. This may in part be because they disproportionately study the most highly threatened taxa and habitats

    Linking changes in species composition and biomass in a globally distributed grassland experiment

    Get PDF
    Global change drivers, such as anthropogenic nutrient inputs, are increasing globally. Nutrient deposition simultaneously alters plant biodiversity, species composition and ecosystem processes like aboveground biomass production. These changes are underpinned by species extinction, colonisation and shifting relative abundance. Here, we use the Price equation to quantify and link the contributions of species that are lost, gained or that persist to change in aboveground biomass in 59 experimental grassland sites. Under ambient (control) conditions, compositional and biomass turnover was high, and losses (i.e. local extinctions) were balanced by gains (i.e. colonisation). Under fertilisation, the decline in species richness resulted from increased species loss and decreases in species gained. Biomass increase under fertilisation resulted mostly from species that persist and to a lesser extent from species gained. Drivers of ecological change can interact relatively independently with diversity, composition and ecosystem processes and functions such as aboveground biomass due to the individual contributions of species lost, gained or persisting.Fil: Ladouceur, Emma. Martin Luther University Halle-Wittenberg; Alemania. Universitat Leipzig; Alemania. German Centre for Integrative Biodiversity Research (iDiv) Leipzig-Halle-Jena; AlemaniaFil: Blowes, Shane A.. Martin Luther University Halle-Wittenberg; Alemania. German Centre for Integrative Biodiversity Research (iDiv) Leipzig-Halle-Jena; AlemaniaFil: Chase, Jonathan M.. German Centre for Integrative Biodiversity Research (iDiv) Leipzig-Halle-Jena; Alemania. Martin Luther University Halle-Wittenberg; AlemaniaFil: Clark, Adam T.. Martin Luther University Halle-Wittenberg; Alemania. German Centre for Integrative Biodiversity Research (iDiv) Leipzig-Halle-Jena; Alemania. University of Graz; AustriaFil: Garbowski, Magda. German Centre for Integrative Biodiversity Research (iDiv) Leipzig-Halle-Jena; Alemania. Universitat Leipzig; AlemaniaFil: Alberti, Juan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Marinas y Costeras. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Marinas y Costeras; ArgentinaFil: Arnillas, Carlos Alberto. University of Toronto; CanadáFil: Bakker, Jonathan. University of Washington; Estados UnidosFil: Barrio, Isabel C.. Agricultural University of Iceland; IslandiaFil: Bharath, Siddharth. Atria University; IndiaFil: Borer, Elizabeth. University of Minnesota; Estados UnidosFil: Brudvig, Lars A.. Michigan State University; Estados UnidosFil: Cadotte, Marc W.. University of Toronto; CanadáFil: Chen, Qingqing. Peking University; ChinaFil: Collins, Scott L.. University of New Mexico; Estados UnidosFil: Dickman, Christopher R.. The University Of Sydney; AustraliaFil: Donohue, Ian. Trinity College Dublin; IrlandaFil: Du, Guozhen. Lanzhou University; ChinaFil: Ebeling, Anne. Universitat Jena; AlemaniaFil: Eisenhauer, Nico. Martin Luther University Halle—Wittenberg; Alemania. German Centre For Integrative Biodiversity Research (idiv) Halle-jena-leipzig; AlemaniaFil: Fay, Philip A.. USDA-ARS Grassland Soil and Water Research Lab; Estados UnidosFil: Hagenah, Nicole. University Of Pretoria; SudáfricaFil: Hautier, Yann. University of Utrecht; Países BajosFil: Jentsch, Anke. University of Bayreuth; AlemaniaFil: Jónsdóttir, Ingibjörg S.. University of Iceland; IslandiaFil: Komatsu, Kimberly J.. Smithsonian Environmental Research Center; Estados UnidosFil: MacDougall, Andrew. University of Guelph; CanadáFil: Martina, Jason P.. Texas State University; Estados UnidosFil: Moore, Joslin L.. Arthur Rylah Institute For Environmental Research; Australia. Monash University; AustraliaFil: Morgan, John W.. La Trobe University; AustraliaFil: Peri, Pablo Luis. Instituto Nacional de Tecnología Agropecuaria; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin

    Opposing community assembly patterns for dominant and nondominant plant species in herbaceous ecosystems globally

    Get PDF
    Biotic and abiotic factors interact with dominant plants—the locally most frequent or with the largest coverage—and nondominant plants differently, partially because dominant plants modify the environment where nondominant plants grow. For instance, if dominant plants compete strongly, they will deplete most resources, forcing nondominant plants into a narrower niche space. Conversely, if dominant plants are constrained by the environment, they might not exhaust available resources but instead may ameliorate environmental stressors that usually limit nondominants. Hence, the nature of interactions among nondominant species could be modified by dominant species. Furthermore, these differences could translate into a disparity in the phylogenetic relatedness among dominants compared to the relatedness among nondominants. By estimating phylogenetic dispersion in 78 grasslands across five continents, we found that dominant species were clustered (e.g., co-dominant grasses), suggesting dominant species are likely organized by environmental filtering, and that nondominant species were either randomly assembled or overdispersed. Traits showed similar trends for those sites (\u3c50%) with sufficient trait data. Furthermore, several lineages scattered in the phylogeny had more nondominant species than expected at random, suggesting that traits common in nondominants are phylogenetically conserved and have evolved multiple times. We also explored environmental drivers of the dominant/nondominant disparity. We found different assembly patterns for dominants and nondominants, consistent with asymmetries in assembly mechanisms. Among the different postulated mechanisms, our results suggest two complementary hypotheses seldom explored: (1) Nondominant species include lineages adapted to thrive in the environment generated by dominant species. (2) Even when dominant species reduce resources to nondominant ones, dominant species could have a stronger positive effect on some nondominants by ameliorating environmental stressors affecting them, than by depleting resources and increasing the environmental stress to those nondominants. These results show that the dominant/nondominant asymmetry has ecological and evolutionary consequences fundamental to understand plant communities
    corecore