13 research outputs found

    Genomic Organization and Evolution of the Vomeronasal Type 2 Receptor-Like (OlfC) Gene Clusters in Atlantic Salmon, Salmo salar

    Get PDF
    There are three major multigene superfamilies of olfactory receptors (OR, V1R, and V2R) in mammals. The ORs are expressed in the main olfactory organ, whereas the V1Rs and V2Rs are located in the vomeronasal organ. Fish only possess one olfactory organ in each nasal cavity, the olfactory rosette; therefore, it has been proposed that their V2R-like genes be classified as olfactory C family G protein-coupled receptors (OlfC). There are large variations in the sizes of OR gene repertoires. Previous studies have shown that fish have between 12 and 46 functional V2R-like genes, whereas humans have lost all functional V2Rs, and frog sp. have more than 240. Pseudogenization of V2R genes is a prevalent event across species. In the mouse and frog genomes, there are approximately double the number of pseudogenes compared with functional genes. An oligonucleotide probe was designed from a conserved sequence from four Atlantic salmon OlfC genes and used to screen the Atlantic salmon bacterial artificial chromosome (BAC) library. Hybridization-positive BACs were matched to fingerprint contigs, and representative BACs were shotgun cloned and sequenced. We identified 55 OlfC genes. Twenty-nine of the OlfC genes are classified as putatively functional genes and 26 as pseudogenes. The OlfC genes are found in two genomic clusters on chromosomes 9 and 20. Phylogenetic analysis revealed that the OlfC genes could be divided into 10 subfamilies, with nine of these subfamilies corresponding to subfamilies found in other teleosts and one being salmon specific. There is also a large expansion in the number of OlfC genes in one subfamily in Atlantic salmon. Subfamily gene expansions have been identified in other teleosts, and these differences in gene number reflect species-specific evolutionary requirements for olfaction. Total RNA was isolated from the olfactory epithelium and other tissues from a presmolt to examine the expression of the odorant genes. Several of the putative OlfC genes that we identified are expressed only in the olfactory epithelium, consistent with these genes encoding odorant receptors

    System modeling of receptor-induced apoptosis

    Get PDF
    International audienceReceptor-induced apoptosis is a complex signal transduction pathway involving numerous protein/protein interactions and post-transcriptional modifications. The response to death receptor stimulation varies significantly from one cell line to another and even from one cell to another within a given cell line. In this context, it is often difficult to assess whether the molecular mechanisms identified so far are sufficient to explain the rich quantitative observations now available, and to detect possible gaps in our understanding. This is precisely where computational systems biology approaches may contribute. In this chapter, we review studies done in this direction, focusing on those that provided significant insight on the functioning of this complex pathway by tightly integrating experimental and computational approaches

    Meta-analysis of three genome-wide association studies identifies susceptibility loci for colorectal cancer at 1q41, 3q26.2, 12q13.13 and 20q13.33

    Get PDF
    Genome-wide association studies (GWAS) have identified ten loci harboring common variants that influence risk of developing colorectal cancer (CRC). To enhance the power to identify additional CRC risk loci, we conducted a meta-analysis of three GWAS from the UK which included a total of 3,334 affected individuals (cases) and 4,628 controls followed by multiple validation analyses including a total of 18,095 cases and 20,197 controls. We identified associations at four new CRC risk loci: 1q41 (rs6691170, odds ratio (OR) = 1.06, P = 9.55 × 10?10 and rs6687758, OR = 1.09, P = 2.27 × 10?9), 3q26.2 (rs10936599, OR = 0.93, P = 3.39 × 10?8), 12q13.13 (rs11169552, OR = 0.92, P = 1.89 × 10?10 and rs7136702, OR = 1.06, P = 4.02 × 10?8) and 20q13.33 (rs4925386, OR = 0.93, P = 1.89 × 10?10). In addition to identifying new CRC risk loci, this analysis provides evidence that additional CRC-associated variants of similar effect size remain to be discovered

    What is the evidence for physical therapy poststroke? A systematic review and meta-analysis

    Get PDF
    BACKGROUND: Physical therapy (PT) is one of the key disciplines in interdisciplinary stroke rehabilitation. The aim of this systematic review was to provide an update of the evidence for stroke rehabilitation interventions in the domain of PT. METHODS AND FINDINGS: Randomized controlled trials (RCTs) regarding PT in stroke rehabilitation were retrieved through a systematic search. Outcomes were classified according to the ICF. RCTs with a low risk of bias were quantitatively analyzed. Differences between phases poststroke were explored in subgroup analyses. A best evidence synthesis was performed for neurological treatment approaches. The search yielded 467 RCTs (N = 25373; median PEDro score 6 [IQR 5-7]), identifying 53 interventions. No adverse events were reported. Strong evidence was found for significant positive effects of 13 interventions related to gait, 11 interventions related to arm-hand activities, 1 intervention for ADL, and 3 interventions for physical fitness. Summary Effect Sizes (SESs) ranged from 0.17 (95%CI 0.03-0.70; I(2) = 0%) for therapeutic positioning of the paretic arm to 2.47 (95%CI 0.84-4.11; I(2) = 77%) for training of sitting balance. There is strong evidence that a higher dose of practice is better, with SESs ranging from 0.21 (95%CI 0.02-0.39; I(2) = 6%) for motor function of the paretic arm to 0.61 (95%CI 0.41-0.82; I(2) = 41%) for muscle strength of the paretic leg. Subgroup analyses yielded significant differences with respect to timing poststroke for 10 interventions. Neurological treatment approaches to training of body functions and activities showed equal or unfavorable effects when compared to other training interventions. Main limitations of the present review are not using individual patient data for meta-analyses and absence of correction for multiple testing. CONCLUSIONS: There is strong evidence for PT interventions favoring intensive high repetitive task-oriented and task-specific training in all phases poststroke. Effects are mostly restricted to the actually trained functions and activities. Suggestions for prioritizing PT stroke research are given
    corecore