528 research outputs found

    Deleterious variation shapes the genomic landscape of introgression

    Get PDF
    While it is appreciated that population size changes can impact patterns of deleterious variation in natural populations, less attention has been paid to how gene flow affects and is affected by the dynamics of deleterious variation. Here we use population genetic simulations to examine how gene flow impacts deleterious variation under a variety of demographic scenarios, mating systems, dominance coefficients, and recombination rates. Our results show that admixture between populations can temporarily reduce the genetic load of smaller populations and cause increases in the frequency of introgressed ancestry, especially if deleterious mutations are recessive. Additionally, when fitness effects of new mutations are recessive, between-population differences in the sites at which deleterious variants exist creates heterosis in hybrid individuals. Together, these factors lead to an increase in introgressed ancestry, particularly when recombination rates are low. Under certain scenarios, introgressed ancestry can increase from an initial frequency of 5% to 30-75% and fix at many loci, even in the absence of beneficial mutations. Further, deleterious variation and admixture can generate correlations between the frequency of introgressed ancestry and recombination rate or exon density, even in the absence of other types of selection. The direction of these correlations is determined by the specific demography and whether mutations are additive or recessive. Therefore, it is essential that null models of admixture include both demography and deleterious variation before invoking other mechanisms to explain unusual patterns of genetic variation.Bernard Y. Kim, Christian D. Huber, Kirk E. Lohmuelle

    Chemical Synthesis of PEDOT–Au Nanocomposite

    Get PDF
    In this work, gold-incorporated polyethylenedioxythiophene nanocomposite material has been synthesized chemically, employing reverse emulsion polymerization method. Infrared and Raman spectroscopic studies revealed that the polymerization of ethylenedioxythiophene leads to the formation of polymer polyethylenedioxythiophene incorporating gold nanoparticles. Scanning electron microscope studies showed the formation of polymer nanorods of 50–100 nm diameter and the X-ray diffraction analysis clearly indicates the presence of gold nanoparticles of 50 nm in size

    Search for sterile neutrino oscillation using RENO and NEOS data

    Full text link
    We present a reactor model independent search for sterile neutrino oscillation using 2\,509\,days of RENO near detector data and 180 days of NEOS data. The reactor related systematic uncertainties are significantly suppressed as both detectors are located at the same reactor complex of Hanbit Nuclear Power Plant. The search is performed by electron antineutrino\,(νe\overline{\nu}_e) disappearance between six reactors and two detectors with baselines of 294\,m\,(RENO) and 24\,m\,(NEOS). A spectral comparison of the NEOS prompt-energy spectrum with a no-oscillation prediction from the RENO measurement can explore reactor νe\overline{\nu}_e oscillations to sterile neutrino. Based on the comparison, we obtain a 95\% C.L. excluded region of 0.1<Δm412<70.1<|\Delta m_{41}^2|<7\,eV2^2. We also obtain a 68\% C.L. allowed region with the best fit of Δm412=2.41±0.03|\Delta m_{41}^2|=2.41\,\pm\,0.03\,\,eV2^2 and sin22θ14\sin^2 2\theta_{14}=0.08±\,\pm\,0.03 with a p-value of 8.2\%. Comparisons of obtained reactor antineutrino spectra at reactor sources are made among RENO, NEOS, and Daya Bay to find a possible spectral variation.Comment: 6 pages, 5 figures: This manuscript has been significantly revised by the joint reanalysis by RENO and NEOS Collaborations. (In the previous edition, the RENO collaboration used publicly available NEOS data to evaluate the expected neutrino spectrum at NEOS.

    Identification of a fall armyworm (Spodoptera frugiperda)-specific gene and development of a rapid and sensitive loop-mediated isothermal amplification assay

    Get PDF
    Open Access Journal; Published online: 18 Jan 2022The fall armyworm [FAW, Spodoptera frugiperda (J E Smith)], a moth native to America, has spread throughout the world since it was first discovered in Africa in 2016. The FAW is a polyphagous migratory pest that can travel over long distances using seasonal winds or typhoons because of its excellent flying ability, causing serious damage to many crops. For effective FAW control, accurate species identification is essential at the beginning of the invasion. In this study, the FAW-specific gene Sf00067 was discovered by performing bioinformatics to develop a fast and accurate tool for the species-specific diagnosis of this pest. An Sf00067 loop-mediated isothermal amplification (LAMP) assay was developed, and optimal conditions were established. The Sf00067 6 primer LAMP (Sf6p-LAMP) assay established in this study was able to diagnose various genotype-based strains of FAW captured in Korea and FAWs collected from Benin, Africa. Our FAW diagnostic protocol can be completed within 30 min, from the process of extracting genomic DNA from an egg or a 1st instar larva to species determination

    Continuous cropping of endangered therapeutic plants via electron beam soil treatment and neutron tomography

    Get PDF
    Various medicinal plants are threatened with extinction owing to their over exploitation and the prevalence of soil borne pathogens. In this study, soils infected with root rot pathogens, which prevent continuous cropping, were treated with an electron beam. The level of soil borne fungus was reduced to amp; 8804;0.01 by soil electron beam treatment without appreciable effects on the levels of antagonistic microorganism or on the physicochemical properties of the soil. The survival rate of 4 year old plant was higher in electron beam treated soil 81.0 than in fumigated 62.5 , virgin 78 , or untreatedreplanting soil 0 . Additionally, under various soils conditions, neutron tomography permitted the monitoring of plant health and the detection of root pathological changes over a period of 4 6 years by quantitatively measuring root water content in situ. These methods allow continual cropping on the same soil without pesticide treatment. This is a major step toward the environmentally friendly production of endangered therapeutic herb

    Chiral perturbation theory calculation for pn -> dpipi at threshold

    Get PDF
    We investigate the reaction pn -> dpipi in the framework of Chiral Perturbation Theory. For the first time a complete calculation of the leading order contributions is presented. We identify various diagrams that are of equal importance as compared to those recognized in earlier works. The diagrams at leading order behave as expected by the power counting. Also for the first time the nucleon-nucleon interaction in the initial, intermediate and final state is included consistently and found to be very important. This study provides a theoretical basis for a controlled evaluation of the non-resonant contributions in two-pion production reactions in nucleon-nucleon collisions.Comment: 24 pages, 3 figures, 3 table

    A precision six-load-component transducer: A design incorporating finite-length measurement paths

    Full text link
    The design of an instrument is described that measures three resultant force components and three resultant moment components acting on a surface. Within the framework of linear elastostatics of an isotropic homogeneous material the device separates to a given precision the six resultant load components. Sensor paths of finite length are employed. Moreover if fiber-optic differential displacement sensors are used rather than traditional electrical resistance strain gages, the range and sensitivity of the instrument can in principle be improved without sacrificing the device stiffness. The primary reason for these improvements is that a complete solution to the equations of elasticity allows certain displacements to be measured over large distances and be combined to yield all of the resultant load components. These displacement measurements over a long distance accommodates the use of fiber-optic interferometric sensors. The use of optical sensors in contrast with electrical-resistance gages, has the potential to allow the measurement precision and range to scale with the geometry of the device rather than the maximum strain in the instrument. It becomes possible by virtue of these features to produce a better instrument.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/43934/1/11340_2006_Article_BF02322149.pd

    Green function techniques in the treatment of quantum transport at the molecular scale

    Full text link
    The theoretical investigation of charge (and spin) transport at nanometer length scales requires the use of advanced and powerful techniques able to deal with the dynamical properties of the relevant physical systems, to explicitly include out-of-equilibrium situations typical for electrical/heat transport as well as to take into account interaction effects in a systematic way. Equilibrium Green function techniques and their extension to non-equilibrium situations via the Keldysh formalism build one of the pillars of current state-of-the-art approaches to quantum transport which have been implemented in both model Hamiltonian formulations and first-principle methodologies. We offer a tutorial overview of the applications of Green functions to deal with some fundamental aspects of charge transport at the nanoscale, mainly focusing on applications to model Hamiltonian formulations.Comment: Tutorial review, LaTeX, 129 pages, 41 figures, 300 references, submitted to Springer series "Lecture Notes in Physics

    Photoproduction of D±D^{*\pm} mesons associated with a leading neutron

    Full text link
    The photoproduction of D±(2010)D^{*\pm} (2010) mesons associated with a leading neutron has been observed with the ZEUS detector in epep collisions at HERA using an integrated luminosity of 80 pb1^{-1}. The neutron carries a large fraction, {xL>0.2x_L>0.2}, of the incoming proton beam energy and is detected at very small production angles, {θn<0.8\theta_n<0.8 mrad}, an indication of peripheral scattering. The DD^* meson is centrally produced with pseudorapidity {η1.9|\eta| 1.9 GeV}, which is large compared to the average transverse momentum of the neutron of 0.22 GeV. The ratio of neutron-tagged to inclusive DD^* production is 8.85±0.93(stat.)0.61+0.48(syst.)%8.85\pm 0.93({\rm stat.})^{+0.48}_{-0.61}({\rm syst.})\% in the photon-proton center-of-mass energy range {130<W<280130 <W<280 GeV}. The data suggest that the presence of a hard scale enhances the fraction of events with a leading neutron in the final state.Comment: 28 pages, 4 figures, 2 table
    corecore