223 research outputs found

    Topological inference for EEG and MEG

    Full text link
    Neuroimaging produces data that are continuous in one or more dimensions. This calls for an inference framework that can handle data that approximate functions of space, for example, anatomical images, time--frequency maps and distributed source reconstructions of electromagnetic recordings over time. Statistical parametric mapping (SPM) is the standard framework for whole-brain inference in neuroimaging: SPM uses random field theory to furnish pp-values that are adjusted to control family-wise error or false discovery rates, when making topological inferences over large volumes of space. Random field theory regards data as realizations of a continuous process in one or more dimensions. This contrasts with classical approaches like the Bonferroni correction, which consider images as collections of discrete samples with no continuity properties (i.e., the probabilistic behavior at one point in the image does not depend on other points). Here, we illustrate how random field theory can be applied to data that vary as a function of time, space or frequency. We emphasize how topological inference of this sort is invariant to the geometry of the manifolds on which data are sampled. This is particularly useful in electromagnetic studies that often deal with very smooth data on scalp or cortical meshes. This application illustrates the versatility and simplicity of random field theory and the seminal contributions of Keith Worsley (1951--2009), a key architect of topological inference.Comment: Published in at http://dx.doi.org/10.1214/10-AOAS337 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    People can identify the likely owner of heartbeats by looking at individuals’ faces

    Get PDF
    For more than a century it has been proposed that visceral and vasomotor changes inside the body influence and reflect our experience of the world. For instance, cardiac rhythms (heartbeats and consequent heart rate) reflect psychophysiological processes that underlie our cognition and affective experience. Yet, considering that we usually infer what others do and feel through vision, whether people can identify the most likely owner of a given bodily rhythm by looking at someone’s face remains unknown. To address this, we developed a novel two-alternative forced-choice task in which 120 participants watched videos showing two people side by side and visual feedback from one of the individuals’ heartbeats in the centre. Participants’ task was to select the owner of the depicted heartbeats. Across five experiments, one replication, and supplementary analyses, the results show that: i) humans can judge the most likely owner of a given sequence of heartbeats significantly above chance levels, ii) that performance in such a task decreases when the visual properties of the faces are altered (inverted, masked, static), and iii) that the difference between the heart rates of the individuals portrayed in our 2AFC task seems to contribute to participants’ responses. While we did not disambiguate the type of information used by the participants (e.g., knowledge about appearance and health, visual cues from heartbeats), the current work represents the first step to investigate the possible ability to infer or perceive others’ cardiac rhythms. Overall, our novel observations and easily adaptable paradigm may generate hypotheses worth examining in the study of human and social cognition.</p

    Active tactile discrimination is coupled with and modulated by the cardiac cycle

    Get PDF
    Perception and cognition are modulated by the phase of the cardiac signal in which the stimuli are presented. This has been shown by locking the presentation of stimuli to distinct cardiac phases. However, in everyday life sensory information is not presented in this passive and phase-locked manner, instead we actively move and control our sensors to perceive the world. Whether active sensing is coupled and modulated with the cardiac cycle remains largely unknown. Here we recorded the electrocardiograms of human participants while they actively performed a tactile grating orientation task. We show that the duration of subjects' touch varied as a function of the cardiac phase in which they initiated it. Touches initiated in the systole phase were held for longer periods of time than touches initiated in the diastole phase. This effect was most pronounced when elongating the duration of the touches to sense the most difficult gratings. Conversely, while touches in the control condition were coupled to the cardiac cycle, their length did not vary as a function of the phase in which these were initiated. Our results reveal that we actively spend more time sensing during systole periods, the cardiac phase associated with lower perceptual sensitivity (vs. diastole). In line with interoceptive inference accounts, these results indicate that we actively adjust the acquisition of sense data to our internal bodily cycles

    Children on the autism spectrum update their behaviour in response to a volatile environment

    Get PDF
    Typical adults can track reward probabilities across trials to estimate the volatility of the environment and use this information to modify their learning rate (Behrens et al., 2007). In a stable environment, it is advantageous to take account of outcomes over many trials, whereas in a volatile environment, recent experience should be more strongly weighted than distant experience. Recent predictive coding accounts of autism propose that autistic individuals will demonstrate atypical updating of their behaviour in response to the statistics of the reward environment. To rigorously test this hypothesis, we administered a developmentally appropriate version of Behrens et al.'s (2007) task to 34 cognitively able children on the autism spectrum aged between 6 and 14 years, 32 age- and ability-matched typically developing children and 19 typical adults. Participants were required to choose between a green and a blue pirate chest, each associated with a randomly determined reward value between 0 and 100 points, with a combined total of 100 points. On each trial, the reward was given for one stimulus only. In the stable condition, the ratio of the blue or green response being rewarded was fixed at 75:25. In the volatile condition, the ratio alternated between 80:20 and 20:80 every 20 trials. We estimated the learning rate for each participant by fitting a delta rule model and compared this rate across conditions and groups. All groups increased their learning rate in the volatile condition compared to the stable condition. Unexpectedly, there was no effect of group and no interaction between group and condition. Thus, autistic children used information about the statistics of the reward environment to guide their decisions to a similar extent as typically developing children and adults. These results help constrain predictive coding accounts of autism by demonstrating that autism is not characterized by uniform differences in the weighting of prediction error

    Seeing Through Each Other's Hearts: Inferring Others' Heart Rate as a Function of Own Heart Rate Perception and Perceived Social Intelligence

    Get PDF
    Successful social interactions require a good understanding of the emotional states of other people. This information is often not directly communicated but must be inferred. As all emotional experiences are also imbedded in the visceral or interoceptive state of the body (i.e., accelerating heart rate during arousal), successfully inferring the interoceptive states of others may open a window into their emotional state. But how well can people do that? Here, we replicate recent results showing that people can discriminate between the cardiac states (i.e., the resting heartrate) of other people by simply looking at them. We further tested whether the ability to infer the interoceptive states of others depends on one’s own interoceptive abilities. We measured people’s performance in a cardioception task and their self-reported interoceptive accuracy. Whilst neither was directly associated to their ability to infer the heartrate of another person, we found a significant interaction. Specifically, overestimating one’s own interoceptive capacities was associated with a worse performance at inferring the heartrate of others. In contrast, underestimating one’s own interoceptive capacities did not have such influence. This pattern suggests that deficient beliefs about own interoceptive capacities can have detrimental effects on inferring the interoceptive states of other people

    Linking differences in action perception with differences in action execution.

    Get PDF
    Successful human social interactions depend upon the transmission of verbal and non-verbal signals from one individual to another. Non-verbal social communication is realized through our ability to read and understand information present in other people's actions. It has been proposed that employing the same motor programs, we use to execute an action when observing the same action underlies this action understanding. The main prediction of this framework is that action perception should be strongly correlated with parameters of action execution. Here, we demonstrate that subjects' sensitivity to observed movement speeds is dependent upon how quickly they themselves executed the observed action. This result is consistent with the motor theory of social cognition and suggests that failures in non-verbal social interactions between individuals may in part result from differences in how those individuals move

    How instructions modify perception: An fMRI study investigating brain areas involved in attributing human agency

    Get PDF
    Behavioural studies suggest that the processing of movement stimuli is influenced by beliefs about the agency behind these actions. The current study examined how activity in social and action related brain areas differs when participants were instructed that identicalmovement stimuli were either human or computer generated.Participants viewed a series of point-light animation figures derived frommotion-capture recordings of amoving actor, while functional magnetic resonance imaging (fMRI) was used to monitor patterns of neural activity. The stimuli were scrambled to produce a range of stimulus realism categories; furthermore, before each trial participants were told that they were about to view either a recording of human movement or a computersimulated pattern of movement. Behavioural results suggested that agency instructions influenced participants' perceptions of the stimuli. The fMRI analysis indicated different functions within the paracingulate cortex: ventral paracingulate cortex was more active for human compared to computer agency instructed trials across all stimulus types, whereas dorsal paracingulate cortex was activated more highly in conflicting conditions (human instruction, lowrealismor vice versa). These findings support the hypothesis that ventral paracingulate encodes stimuli deemed to be of human origin,whereas dorsal paracingulate cortex is involvedmore in the ascertainment of human or intentional agency during the observation of ambiguous stimuli. Our results highlight the importance of prior instructions or beliefs on movement processing and the role of the paracingulate cortex in integrating prior knowledge with bottom-up stimuli

    Relationship between Activity in Human Primary Motor Cortex during Action Observation and the Mirror Neuron System

    Get PDF
    The attenuation of the beta cortical oscillations during action observation has been interpreted as evidence of a mirror neuron system (MNS) in humans. Here we investigated the modulation of beta cortical oscillations with the viewpoint of an observed action. We asked subjects to observe videos of an actor making a variety of arm movements. We show that when subjects were observing arm movements there was a significant modulation of beta oscillations overlying left and right sensorimotor cortices. This pattern of attenuation was driven by the side of the screen on which the observed movement occurred and not by the hand that was observed moving. These results are discussed in terms of the firing patterns of mirror neurons in F5 which have been reported to have similar properties

    Aposematism in the burying beetle? Dual function of anal fluid in parental care and chemical defence

    Get PDF
    Burying beetles (Nicrophorus vespilloides) bear distinctive and variable orange-black patterning on their elytra and produce an anal exudate from their abdomen when threatened. During breeding, the anal exudates contribute to the antimicrobial defence of the breeding resource. We investigated whether the anal exudates also provide a responsive chemical defence, which is advertised to potential avian predators by the beetle’s orange and black elytral markings. We found that that the orange-black elytral markings of the burying beetle are highly conspicuous for avian predators against range of backgrounds, by using computer simulations. Using bioassays with wood ants, we also showed that the burying beetle’s anal exudates are aversive to potential predators. From these results, and other evidence in the literature, we conclude that the evidence for aposematism in the burying beetle is as strong as the evidence for many other classically aposematic species, such as defended Hymenopterans, ladybirds or poisonous frogs. Nevertheless, we also report unexpectedly high levels of individual variation in coloration and chemical defences, as well as sex differences. We suggest that this variation might be due partly to conflicting selection pressures, particularly on the dual function of the exudates, and partly to nutritional differences in the developmental environment. The ecology of the burying beetles (Nicrophorus spp.) differs markedly from better-studied aposematic insects. This genus thus offers new potential for understanding the evolution of aposematism in general
    • …
    corecore