396 research outputs found

    Morphological evolution of the mammalian jaw adductor complex

    Get PDF
    The evolution of the mammalian jaw during the transition from non-mammalian synapsids to crown mammals is a key event in vertebrate history and characterised by the gradual reduction of its individual bones into a single element and the concomitant transformation of the jaw joint and its incorporation into the middle ear complex. This osteological transformation is accompanied by a rearrangement and modification of the jaw adductor musculature, which is thought to have allowed the evolution of a more-efficient masticatory system in comparison to the plesiomorphic synapsid condition. While osteological characters relating to this transition are well documented in the fossil record, the exact arrangement and modifications of the individual adductor muscles during the cynodont–mammaliaform transition have been debated for nearly a century. We review the existing knowledge about the musculoskeletal evolution of the mammalian jaw adductor complex and evaluate previous hypotheses in the light of recently documented fossils that represent new specimens of existing species, which are of central importance to the mammalian origins debate. By employing computed tomography (CT) and digital reconstruction techniques to create three-dimensional models of the jaw adductor musculature in a number of representative non-mammalian cynodonts and mammaliaforms, we provide an updated perspective on mammalian jaw muscle evolution. As an emerging consensus, current evidence suggests that the mammal-like division of the jaw adductor musculature (into deep and superficial components of the m. masseter, the m. temporalis and the m. pterygoideus) was completed in Eucynodontia. The arrangement of the jaw adductor musculature in a mammalian fashion, with the m. pterygoideus group inserting on the dentary was completed in basal Mammaliaformes as suggested by the muscle reconstruction of Morganucodon oehleri. Consequently, transformation of the jaw adductor musculature from the ancestral (‘reptilian’) to the mammalian condition must have preceded the emergence of Mammalia and the full formation of the mammalian jaw joint. This suggests that the modification of the jaw adductor system played a pivotal role in the functional morphology and biomechanical stability of the jaw joint

    A new species of <i>Pluridens</i> (Mosasauridae Halisaurinae) from the upper Campanian of Southern Nigeria

    Get PDF
    The Upper Cretaceous of Africa has produced a diverse fauna of mosasaurs, including the highly specialized, long-jawed Pluridens. The type of Pluridens walkeri comes from the Maastrichtian Farin-Doutchi Formation of Niger, with a second, referred specimen coming from the Campanian section of the Campanian-Maastrichtian Nkporo Shale near Calabar, in southern Nigeria. Comparisons of this referred specimen with the holotype suggest that it represents a distinct and more primitive species. The Calabar jaw resembles P. walkeri in being long and narrow anteriorly with a shallow subdental shelf, and in having small, numerous, recurved teeth with medially positioned replacement pits. However, it lacks many of the derived features that characterize Pluridens walkeri, such as the extremely long and straight jaw, the extreme lateral protrusion and subcircular section of the dentary, strong transverse expansion of the dental thecae, and extreme reduction and increase in number of the teeth. The Calabar Pluridens is therefore referred to a new species, Pluridens calabaria. Following recent studies, Pluridens is considered to represent a highly derived member of the Halisaurinae. The marked differences between the Campanian and Maastrichtian species of the genus underscore the rapid pace of mosasaur evolution during the Cretaceous.</p

    Deep time diversity of metatherian mammals: Implications for evolutionary history and fossil-record quality

    Get PDF
    Despite a global fossil record, Metatheria are now largely restricted to Australasia and South America. Most metatherian paleodiversity studies to date are limited to particular subclades, time intervals, and/or regions, and few consider uneven sampling. Here, we present a comprehensive new data set on metatherian fossil occurrences (Barremian to end Pliocene). These data are analyzed using standard rarefaction and shareholder quorum subsampling (including a new protocol for handling Lagerstätte-like localities). Global metatherian diversity was lowest during the Cretaceous, and increased sharply in the Paleocene, when the South American record begins. Global and South American diversity rose in the early Eocene then fell in the late Eocene, in contrast to the North American pattern. In the Oligocene, diversity declined in the Americas, but this was more than offset by Oligocene radiations in Australia. Diversity continued to decrease in Laurasia, with final representatives in North America (excluding the later entry of Didelphis virginiana) and Europe in the early Miocene, and Asia in the middle Miocene. Global metatherian diversity appears to have peaked in the early Miocene, especially in Australia. Following a trough in the late Miocene, the Pliocene saw another increase in global diversity. By this time, metatherian biogeographic distribution had essentially contracted to that of today. Comparison of the raw and sampling-corrected diversity estimates, coupled with evaluation of "coverage" and number of prolific sites, demonstrates that the metatherian fossil record is spatially and temporally extremely patchy. Therefore, assessments of macroevolutionary patterns based on the raw fossil record (as in most previous studies) are inadvisable.Fil: Bennett, C. Verity. University College London; Estados UnidosFil: Upchurch, Paul. University College London; Estados UnidosFil: Goin, Francisco Javier. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. División Paleontología Vertebrados; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Goswami, Anjadi. University College London; Estados Unido

    Phylogenetic placement of Adalatherium hui (Mammalia, Gondwanatheria) from the Late Cretaceous of Madagascar : implications for allotherian relationships

    Get PDF
    The phylogenetic position of Gondwanatheria within Mammaliaformes has historically been controversial. The well-preserved skeleton of Adalatherium hui from the Late Cretaceous of Madagascar offers a unique opportunity to address this issue, based on morphological data from the whole skeleton. Gondwanatheria were, until recently, known only from fragmentary dental and mandibular material, as well as a single cranium. The holotype of A. hui provides the first postcranial skeleton for gondwanatherians and substantially increases the amount of character data available to score. We sampled 530 characters and 84 cynodonts (including 34 taxa historically affiliated with Allotheria) to test the phylogenetic relationships of Gondwanatheria and Allotheria using parsimony, undated Bayesian, and tip-dated Bayesian methods. We tested three lower dental formulae for Adalatherium, because its postcanines are distinctly different from those of other mammaliaforms and cannot readily be homologized with any known dental pattern. In all analyses, Adalatherium is recovered within Gondwanatheria, most frequently outside of Sudamericidae or Ferugliotheriidae, which is congruent with establishment of the family Adalatheriidae. The different dental coding schemes do not greatly impact the position of Adalatherium, although there are differences in character optimization. In all analyses, Gondwanatheria are placed within Allotheria, either as sister to Multituberculata, nested within Multituberculata, or as sister to Cifelliodon (and Euharamiyida), or in a polytomy with other allotherians. The composition of Allotheria varies in our analyses. The haramiyidans Haramiyavia and Thomasia are placed outside of Allotheria in the parsimony and tip-dated Bayesian analyses, but in a polytomy with other allotherians in the undated Bayesian analyses

    New Specimens of Nemegtomaia from the Baruungoyot and Nemegt Formations (Late Cretaceous) of Mongolia

    Get PDF
    Two new specimens of the oviraptorid theropod Nemegtomaia barsboldi from the Nemegt Basin of southern Mongolia are described. Specimen MPC-D 107/15 was collected from the upper beds of the Baruungoyot Formation (Campanian-Maastrichtian), and is a nest of eggs with the skeleton of the assumed parent of Nemegtomaia on top in brooding position. Much of the skeleton was damaged by colonies of dermestid coleopterans prior to its complete burial. However, diagnostic characters are recovered from the parts preserved, including the skull, partial forelimbs (including the left hand), legs, and distal portions of both feet. Nemegtomaia represents the fourth known genus of oviraptorid for which individuals have been found on nests of eggs. The second new specimen, MPC-D 107/16, was collected a few kilometers to the east in basal deposits of the Nemegt Formation, and includes both hands and femora of a smaller Nemegtomaia individual. The two formations and their diverse fossil assemblages have been considered to represent sequential time periods and different environments, but data presented here indicate partial overlap across the Baruungoyot-Nemegt transition. All other known oviraptorids from Mongolia and China are known exclusively from xeric or semi-arid environments. However, this study documents that Nemegtomaia is found in both arid/aeolian (Baruungoyot Formation) and more humid/fluvial (Nemegt Formation) facies

    Testing the function of dromaeosaurid (Dinosauria, Theropoda) 'sickle claws' through musculoskeletal modelling and optimization

    Get PDF
    Dromaeosaurids were a clade of bird-like, carnivorous dinosaurs that are well known for their characteristic morphology of pedal digit II, which bore an enlarged, sickle-shaped claw and permitted an extreme range of flexion–extension. Proposed functions for the claw often revolve around predation, but the exact manner of use varies widely. Musculoskeletal modelling provides an avenue to quantitatively investigate the biomechanics of this enigmatic system, and thereby test different behavioural hypotheses. Here, a musculoskeletal model of the hindlimb and pes of Deinonychus was developed, and mathematical optimization was used to assess the factors that maximize production of force at the claw tip. Optimization revealed that more crouched hindlimb postures (i.e., more flexed knees and ankles) and larger flexor muscle volumes consistently increased claw forces, although the optimal degree of digit flexion or extension depended on assumptions of muscle activity and fibre operating range. Interestingly, the magnitude of force capable of being produced at the claw tip was relatively small, arguing against regular transmission of a large proportion of body weight into a substrate principally via the claw tip. Such transmission would therefore likely have needed to occur via more proximal parts of the foot. Collectively, the results best support a grasping function for digit II (e.g., restraint of prey smaller than the dromaeosaurid’s own body size), although other behaviours involving flexed hindlimbs cannot be excluded

    Homeotic Evolution in the Mammalia: Diversification of Therian Axial Seriation and the Morphogenetic Basis of Human Origins

    Get PDF
    Despite the rising interest in homeotic genes, little has been known about the course and pattern of evolution of homeotic traits across the mammalian radiation. An array of emerging and diversifying homeotic gradients revealed by this study appear to generate new body plans and drive evolution at a large scale.This study identifies and evaluates a set of homeotic gradients across 250 extant and fossil mammalian species and their antecedents over a period of 220 million years. These traits are generally expressed as co-linear gradients along the body axis rather than as distinct segmental identities. Relative position or occurrence sequence vary independently and are subject to polarity reversal and mirroring. Five major gradient modification sets are identified: (1)--quantitative changes of primary segmental identity pattern that appeared at the origin of the tetrapods ; (2)--frame shift relation of costal and vertebral identity which diversifies from the time of amniote origins; (3)--duplication, mirroring, splitting and diversification of the neomorphic laminar process first commencing at the dawn of mammals; (4)--emergence of homologically variable lumbar lateral processes upon commencement of the radiation of therian mammals and ; (5)--inflexions and transpositions of the relative position of the horizontal septum of the body and the neuraxis at the emergence of various orders of therian mammals. Convergent functional changes under homeotic control include laminar articular engagement with septo-neural transposition and ventrally arrayed lumbar transverse process support systems.Clusters of homeotic transformations mark the emergence point of mammals in the Triassic and the radiation of therians in the Cretaceous. A cluster of homeotic changes in the Miocene hominoid Morotopithecus that are still seen in humans supports establishment of a new "hominiform" clade and suggests a homeotic origin for the human upright body plan
    corecore