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Short abstract: Our computed tomography study of the virtual brain and inner ear endocasts of 23 

the extinct mammal Chriacus shows that some early placental mammals evolving after the end-24 

Cretaceous mass extinction (66 million years ago) had small brains, relied more on smell than 25 

vision, were slow to moderately agile, and had hearing capabilities similar to the extant aardvark, 26 

Orycteropus. Chriacus shares important derived features of the inner ear with euungulates, the 27 

group of modern hoofed mammals, suggesting a close relationship. 28 

 29 
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Abstract— The end-Cretaceous mass extinction allowed placental mammals to ecologically and 1 

taxonomically diversify, as they filled ecological niches once occupied by non-avian dinosaurs 2 

and more basal mammals. Little is known, however, about how the neurosensory systems of 3 

mammals changed after the extinction, and what role these systems played in mammalian 4 

diversification. We here use high-resolution computed tomography (CT) scanning to describe the 5 

endocranial and inner ear endocasts of two species, Chriacus pelvidens and Ch. baldwini, which 6 

belong to a cluster of ‘archaic’ placental mammals called ‘arctocyonid condylarths’ that thrived 7 

during the ca. 10 million years after the extinction (the Paleocene Epoch), but whose 8 

relationships to extant placentals are poorly understood. The endocasts provide new insight into 9 

the paleobiology of the long-mysterious ‘arctocyonids’, and suggest that Chriacus was an animal 10 

with an EQ range of 0.12-0.41, which probably relied more on its sense of smell than vision, 11 

because the olfactory bulbs are proportionally large but the neocortex and petrosal lobules are 12 

less developed. Agility scores, estimated from the dimensions of the semicircular canals of the 13 

inner ear, indicate that Chriacus was slow to moderately agile, and its hearing capabilities, 14 

estimated from cochlear dimensions, suggest similarities with the extant aardvark. Chriacus 15 

shares many brain features with other Paleocene mammals, such as a small lissencephalic brain, 16 

large olfactory bulbs, and small petrosal lobules, which are likely plesiomorphic for Placentalia. 17 

The inner ear of Chriacus also shares derived characteristics of the elliptical and spherical 18 

recesses with extinct species that belong to Euungulata, the extant placental group that includes 19 

artiodactyls and perissodactyls. This lends key evidence to the hypothesized close relationship 20 

between Chriacus and the extant ungulate groups, and demonstrates that neurosensory features 21 

can provide important insight into both the paleobiology and relationships of early placental 22 

mammals. 23 
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Introduction  1 

 Placental mammals are by far the most diverse group of mammals today with 6,111 2 

species, compared to marsupials (379 species) and monotremes (5 species; Burgin et al. 2018). 3 

Placentals, which give live-birth to well-developed young, can be found all around the world in a 4 

plethora of ecological niches and display a wide range of body masses (Nowak, 1999). This 5 

clade probably started to diversify during the Late Cretaceous when dinosaurs were still the 6 

dominant animals on Earth (Murphy et al. 2001; Dos Reis et al. 2012, 2014; Liu et al. 2017). The 7 

end-Cretaceous cataclysm that killed off non-avian dinosaurs and many other vertebrates about 8 

66 million years ago provided placental mammals with a unique opportunity to thrive (Wible et 9 

al. 2007; O’Leary et al. 2013). Some 10 million years into the Paleogene, placental mammals 10 

had already displayed a clear increase in taxonomic and ecological diversity, as well as in 11 

evolutionary rates, in contrast to their end-Cretaceous relatives (Alroy, 1999; Slater, 2013; 12 

Grossnickle & Newham, 2016; Halliday et al. 2016; Halliday & Goswami, 2016a, 2016b). This 13 

extrinsic environmental change definitively opened new ecological opportunities for placental 14 

mammals; however, intrinsic aspects of placental mammals likely played a role in their success 15 

as well (Wilson, 2013).  16 

One of the biological features that may have been integral in the rise of placental 17 

mammals is their neurosensory system. Extant mammals have the largest brain relative to body 18 

mass of all vertebrates (Jerison, 1973). They have also developed a new region of the forebrain 19 

called the neocortex, which integrates sensory and motor information, including high thought 20 

process, vision and audition (Jerison, 1973; Martin, 1990). The general neurosensory 21 

organization exhibited by extant mammals has been maintained since the Late Triassic-Early 22 

Jurassic (e.g. by ca. 200 million years ago), when the first mammals and their closest relatives 23 
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started to emerge (Rowe, 1996; Rowe et al. 2011). Much later, fossils of early members of extant 1 

crown placental groups from the Eocene and Oligocene (ca. 56-23 million years ago)—including 2 

rodents, euprimates and artiodactyls—display neurosensory innovations such as a proportionally 3 

larger neocortex, as well as a higher encephalization quotient compared to their Mesozoic 4 

ancestors, but not as high as their present-day descendants (Silcox et al. 2009b; Orliac & 5 

Gilissen, 2012; Bertrand et al. 2016). However, between these two well-known intervals of 6 

mammalian neurosensory evolution, there is a gap: few studies have focused on the brain of the 7 

oldest placental mammals living during the early Paleogene, in the Paleocene (66-56 million 8 

years ago; Radinsky, 1977; Gingerich & Gunnell, 2005; Silcox et al. 2011; Orliac et al. 2014; 9 

Muizon et al. 2015; Napoli et al. 2017; Cameron et al. 2019). This is problematic because these 10 

taxa are critical to understanding neurosensory evolution of placental mammals in the aftermath 11 

of the end-Cretaceous extinction. 12 

One of the reasons for this gap is that the anatomy and phylogenetic relationships of the 13 

placentals living during the first ca. 10 million years of the Paleogene remain largely mysterious 14 

(Williamson, 1996; Rose, 2006), despite a large diversity of Paleocene placentals—about 690 15 

species known globally from fossils (The Paleobiology Database, 2019). The phylogenetic 16 

relationships of these “archaic” placentals with both their Cretaceous forebears and more recent 17 

placentals (including the extant orders) are still unclear (Rose, 2006). This is particularly true for 18 

the ‘condylarths’, a heterogeneous collection of taxa that includes more than 100 species that 19 

roamed the Earth during the Paleocene and Eocene. They have been categorized as primitive 20 

ungulate-like mammals, and some of them may have given rise to extant perissodactyls and 21 

artiodactyls (Prothero et al. 1988; Rose, 2006; O’Leary et al. 2013). However, their classification 22 
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and relationships are a morass, making ‘Condylarthra’ one of the most infamous wastebasket 1 

groups in paleontology.  2 

Most work on ‘condylarths’, going back to the studies of Cope (1881a; 1884a, b), Osborn 3 

and Earle (1895) and Matthew (1937), used dental and postcranial features to make links to 4 

extant placental groups. Recent phylogenetic analyses of these species are dominated by dental 5 

characters, which although often highly informative in diagnosing major mammalian clades can 6 

also suffer from homoplasy related to dietary convergence and developmental constraints 7 

(Kangas et al. 2004; Kassai et al. 2005; Zou & Zhang, 2016; Sansom et al. 2017; Billet & 8 

Bardin, 2018). In part this is unavoidable, as teeth make up the vast majority of the fossil record 9 

of ‘condylarths’ and other early placentals. Neurosensory anatomy, however, offers potential for 10 

identifying key features that may unite Paleocene ‘condylarths’ with extant groups, along with 11 

helping to understand the behavior of these long-extinct mammals during a time of major 12 

ecological, environmental, and evolutionary changes. The brains, inner ears, and other 13 

neurosensory structures of ‘condylarths’ have been difficult to study because they do not directly 14 

preserve in fossils, but the advent of computed tomography (CT) scanning has recently allowed 15 

visualization of the internal spaces holding these structures. Thus far, only a few studies have 16 

used CT to examine the neurosensory anatomy of ‘condylarths’ (Orliac & Gilissen, 2012; Orliac 17 

et al. 2012a; Ravel & Orliac, 2015; Orliac & O’Leary, 2016; Cameron et al. 2019). More work is 18 

thus required to better appreciate the neurological variation among early placentals, identify 19 

phylogenetically informative features, and decipher how the survival and diversification of these 20 

mammals might be related to neurosensory biology.  21 

 Here, we describe the neurosensory system of Chriacus pelvidens and Ch. baldwini, 22 

which belong to ‘Arctocyonidae’, a diverse cluster of ‘condylarths’. ‘Arctocyonids’ were among 23 
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the first placental groups to diversify after the end-Cretaceous mass extinction. They have been 1 

reconstructed as small-to-medium sized omnivores with a variety of diets, including carnivory, 2 

insectivory and frugivory (Collinson & Hooker, 1987; Archibald, 1998; Rose, 2006; Penkrot, 3 

2008; Hooker & Collinson, 2012). Most were probably terrestrial but some may have been 4 

scansorial, cursorial or arboreal (Rose, 1996; 2006). Thus far, their fossils have been found in 5 

Europe, North America and possibly in Asia (e.g. Russell, 1964; Russell & Zhai, 1987; 6 

Williamson & Lucas, 1993). Their taxonomic history is complicated and today they are 7 

recognized as polyphyletic or as an ‘ancestral stock’ from which many other Paleogene 8 

mammals emerged, with some species implicated in the origins of some of the extant orders. 9 

Chriacus has been associated tenuously with artiodactyls (e.g. Van Valen, 1971, 1978; Rose, 10 

1996; Ladevèze et al. 2010; De Bast & Smith, 2013), although some studies make a link with 11 

Ferae (carnivorans and creodonts: Halliday et al. 2017). Chriacus was also a diverse and 12 

abundant taxon in North America during the early Paleogene, making it an important component 13 

of these early placental-dominated faunas. Thus, a description of the neurosensory anatomy of 14 

Chriacus has the potential to clarify aspects of the relationships, evolution, and biology of the 15 

earliest placentals.  16 

 17 

Taxonomic History 18 

‘Arctocyonidae’ was once thought to belong to the carnivoran-related group Creodonta 19 

(e.g., Cope, 1875; Matthew, 1915), but the signature “carnassials or specialized shearing teeth” 20 

(Matthew, 1937) of creodonts and carnivorans, are lacking in ‘arctocyonids’. ‘Arctocyonids’ 21 

were then recognized as ‘condylarths’ and more specifically as potential stem ungulates (e.g. 22 
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Patterson & McGrew, 1962; Van Valen, 1966 but see also Ameghino, 1901; Kretzoi, 1943; 1 

Rose, 1996; Kondrashov & Lucas 2004a, b; De Bast & Smith 2013). ‘Arctocyonids’ is divided 2 

into three subfamilies: Arctocyoninae (Matthew, 1937), Loxolophinae (Van Valen, 1978), and 3 

Oxyclaeninae (Matthew, 1937; see also Cifelli, 1983). The relationships among these subfamilies 4 

have long been under debate (see Simpson, 1945; Van Valen, 1978; Prothero et al. 1988; 5 

Archibald, 1998; Rose, 2006), and ‘Arctocyonidae’ is almost certainly not a monophyletic group 6 

(Archibald, 1998; Williamson & Carr, 2007; De Bast & Smith, 2013). Evolutionary relationships 7 

among ‘arctocyonids’ remain to be properly tested by a large-scale phylogenetic analysis 8 

including Mesozoic, Paleogene, and extant mammals, which is ongoing by our research group. 9 

The ‘arctocyonid’ Lipodectes pelvidens was first described by Cope (1881b) and two 10 

years later he referred this species to the new genus Chriacus. Currently, Chriacus is composed 11 

of nine different species (Archibald, 1998) and thus far, no phylogenetic analysis has untangled 12 

the relationships among those species, or even tested whether they all form a clade or even 13 

constitute a single genus. Thus, the genus Chriacus likely needs to be revised (Williamson & 14 

Lucas, 1993), but this is outside of the scope of our study. In general, the specimens assigned to 15 

Chriacus indicate a mammal similar in size to a racoon (~5 to 10 kg; Rose, 1987), which was 16 

probably scansorial to arboreal or even cursorial, depending on the specimens being studied 17 

(Rose, 1996, 2006). Specimens of Chriacus are known from the early Paleocene (Pu2) to the late 18 

Eocene (Archibald, 1998), and unusually for a Paleogene ‘archaic’ placental, include a large 19 

amount of associated cranial and postcranial material (Matthew, 1897, 1915; Rose, 1987, 1990, 20 

1996; Szalay & Lucas, 1996).  21 

A close relationship between Chriacus and Artiodactyla has been proposed, based on 22 

both postcranial and dental elements (Van Valen 1971, 1978; Rose, 1996). This has been 23 
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corroborated by some recent phylogenetic analyses, most notably the study of Ladevèze et al. 1 

(2010), which found Chriacus nested inside the sister-clade to Artiodactyla (including the oldest 2 

unequivocal extinct artiodactyl, Diacodexis), and the analysis of De Bast and Smith (2013), 3 

which placed it within an array of ‘condylarths’ closely related to Diacodexis. However, a 4 

Chriacus-artiodactyl link is by no means certain: Rose (1987) argued that postcrania from 5 

another Chriacus species of uncertain identification (referred to as Chriacus sp. in his study) 6 

bore little resemblance to Diacodexis, and the phylogenetic analysis of Halliday et al. (2017) 7 

placed Chriacus far distant from artiodactyls, instead within a clade that includes Ferae (extant 8 

pangolins and carnivorans). 9 

 10 

Institutional abbreviations 11 

 12 

AMNH, American Museum of Natural History, New York, NY; AMNH FM, American Museum 13 

of Natural History, Fossil Mammals, New York, NY; AMNH VP, American Museum of Natural 14 

History, Vertebrate Paleontology, New York, NY; MCZ, Museum of Comparative Zoology, 15 

Cambridge, MA; MHNC, Museo de Historia Natural “Alcide d’Orbigny”, Cochabamba, Bolivia; 16 

NMMNH P, New Mexico Museum of Natural History, Paleontology, Albuquerque, NM; PSS-17 

MAE, Collections of Joint Paleontological and Stratigraphic Section of the Geological Institute, 18 

Mongolian Academy of Science, Ulaanbaatar – American Museum of Natural History, New 19 

York, NY; UFRJ-DG, Universidad Federal do Estado de Rio de Janeiro, Rio de Janeiro, 20 

Departamento de Geologia, Brazil; USNM, United States National Museum, Washington, D.C.  21 

 22 

Materials and methods 23 
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 1 

Chriacus specimens 2 

The Chriacus specimens studied here belong to two different species: Ch. baldwini and 3 

Ch. pelvidens. A large amount of material has been attributed to Ch. baldwini, including 4 

postcranial material (Matthew, 1897; Ch. truncatus in Rose, 1996). This species was first 5 

described by Cope (1882), and subsequently many other species of Chriacus have been 6 

synonymized with Ch. baldwini (see Williamson & Lucas, 1993). A variety of mandibular and 7 

dental elements have been described for Ch. pelvidens (see Matthew, 1897, 1937; Gazin, 1969; 8 

Krause & Gingerich, 1983; Kondrashov & Lucas, 2015). We analyzed two specimens: a cranium 9 

(MCZ 20676) belonging to Ch. baldwini and two petrosals (NMMNH P-62258) pertaining to 10 

Ch. pelvidens, which have been found associated with cranial and postcranial material, including 11 

teeth diagnostic for the species. We use these specimens to describe the brain and inner ear 12 

endocasts of Chriacus. As noted above, the genus Chriacus is in need of revision (Williamson & 13 

Lucas, 1993). The petrosals studied here exhibit divergent morphologies, which might result in 14 

generic reclassification upon broader revision.  15 

 16 

 Cranium – MCZ 20676 is slightly flattened dorsoventrally but most of the cranium is 17 

preserved (Figs 1 and S1). The specimen lacks fine details such as bone sutures on its surface. A 18 

large hole penetrates the specimen medial to the auditory region (Fig. 1). Neither zygomatic arch 19 

is preserved. The external aspect of the auditory region is better preserved on the right side of the 20 

cranium and some foramina can be identified (Fig. 1A, B). The molars M1 to M3 are preserved 21 

on both sides and are not very worn, but the occlusal surface of both P5s is strongly damaged 22 

(Fig. 1A). MCZ 20676 was collected by Craig Wood in 1980, but the exact locality was not 23 
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recorded. Stratigraphically, the location is similar to the position of locality 9 at Escavada Wash 1 

of the Nacimiento Formation of the San Juan Basin, New Mexico, but possibly lower (early 2 

Paleocene; Torrejonian NALMA; To2, ~62.7-62.6 Ma; Leslie et al. 2018). The two species 3 

present in the Torrejonian age deposits of the Nacimiento Formation, Ch. pelvidens and Ch. 4 

baldwini, are very similar morphologically but are of different size, with Ch. pelvidens larger 5 

(Williamson & Lucas, 1993; Williamson, 1996). One of the most diagnostic characteristics of 6 

M1-2 in MCZ 20676, a feature that readily allows confident identification as Chriacus, is the 7 

hypertrophied hypocone that forms a lobe that extends distolingually. The hypocone lobe 8 

projects far lingual to the margin of the protocone. This specimen has never been described in 9 

detail; however, based on size we assign it to Ch. baldwini.  10 

Petrosals – NMMNH P-62258 includes the left and right petrosals of a single individual 11 

(Fig. 2). Some of the foramina of the ear region are visible, such as the fenestra vestibuli and 12 

external aperture of the cochlear fossula (Fig. 1B). This specimen also includes a fragmented 13 

partial cranium, mandibles and associated fragmented postcrania. The dentition is incomplete 14 

and includes three isolated incisors, a partial left dP5, a left M1, a fragmented right m1, partial 15 

right m2, and numerous fragments of other upper and lower teeth. Several fragments of the 16 

mandibles are unusually shallow and have immature bone grain, confirming that NMMNH P-17 

62258 was a juvenile. This specimen has yet to be described in detail and was collected by U. 18 

Denetclaw and TEW in 2010 from locality L-4950, which is on the East Flank of Torreon Wash 19 

in the Nacimiento Formation (early Paleocene; Torrejonian NALMA; To2, ~62.63 Ma; Leslie et 20 

al. 2018). Solely based on size, the teeth associated with the petrosal can be attributed to Ch. 21 

pelvidens.  22 

 23 
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Comparative sample 1 

For morphological comparisons of the inner ear, we made comparisons to the Eocene 2 

artiodactyl Diacodexis ilicis (AMNH VP 16141; Orliac et al. 2012b), the potential Paleocene 3 

stem euungulate Protungulatum sp. (AMNH VP 118359; Orliac & O’Leary, 2016), two 4 

specimens of the Paleocene pantodont Alcidedorbignya inopinata (MHNC 8399; MHNC 8360; 5 

Muizon et al. 2015), the Paleocene periptychid ’condylarth‘ Carsioptychus coarctatus (AMNH 6 

27601; Cameron et al. 2018), and the Eocene ’condylarth‘ Hyopsodus lepidus (AMNH FM 7 

143783; Ravel & Orliac, 2015). For quantitative measurements, in addition to the specimens 8 

above, we made comparisons with Late Cretaceous eutherians: Ukhaatherium gobiensis (PSS-9 

MAE 110; Ekdale, 2013), Kulbeckia kulbecke (average values), Zalambdalestes lechei (average 10 

values) and zhelestids (average values; Ekdale & Rowe; 2011). For agility score comparisons, 11 

we also included Paleocene and Eocene plesiadapiforms and euprimates (Table S4; Silcox et al. 12 

2009a). For hearing frequency comparisons, we also included extant taxa from Ekdale (2013; see 13 

Table S5). For anatomical comparisons of the cranial endocast, we compared our specimens to 14 

Diacodexis ilicis (AMNH VP 16141; Orliac & Gilissen, 2012), Hyopsodus lepidus (AMNH FM 15 

143783; Orliac et al. 2012a), Alcidedorbignya inopinata (MHNC 8372; Muizon et al. 2015), 16 

Carsioptychus coarctatus (AMNH 27601) and the Paleocene taeniodont Onychodectes tisonensis 17 

(AMNH 785; Napoli et al. 2017). 18 

 19 

Virtual endocasts acquisition  20 

The petrosals of NMMNH P-62258 were scanned by IBB with a X-ray microtomography 21 

instrument constructed in-house at the University of Edinburgh School of GeoSciences. Both 22 

petrosals were scanned with the following parameters: voltage of 120 kV, current of 23 µA and 23 
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voxel size of 0.014584 mm. The cranium MCZ 20676 was scanned by Justin Gladman at the 1 

Shared Materials Instrumentation Facility (SMIF), Duke University in Durham, North Carolina. 2 

This specimen was flipped right / left during the scanning process. The inside of the cranium is 3 

not well preserved and identifying the boundary between bone and matrix was challenging (Fig. 4 

S2A). MCZ 20676 was scanned with the following parameters: voltage of 220 kV, current of 5 

118 µA and voxel size of 0.0267349443551745 mm. The three specimens were segmented in 6 

Avizo® 9.7.0 software (Visualization and Sciences Group, 1995-2018). New labelfield modules 7 

were created to segment the different specimens. The pen tool was used to isolate the endocranial 8 

cavity of the petrosals and cranium because the inside was not empty and the matrix had similar 9 

density to the bone. When the bone was not preserved, a straight line was used to link the two 10 

nearest pieces of bone. If the bone was detached from the matrix, the latter was used to trace the 11 

endocast on the premise that a natural endocast had formed inside the cranium and the isolated 12 

petrosal bones. Finally, the cranium and petrosal bones and their respective endocasts were 13 

opened separately in Avizo in order to obtain an image showing the bony labyrinth and cranial 14 

endocasts inside translucent petrosals and cranium (Figs 2 and 3). For nomenclature, we 15 

followed Wible et al. (2009) and Muizon et al. (2015) and references therein for cranial and 16 

petrosal anatomy, Bertrand et al., (2018b) for endocranial anatomy, and Orliac and O’Leary 17 

(2016) for bony labyrinth anatomy. 18 

 The volumes of the cochlea, labyrinth and cranial virtual endocasts were obtained by 19 

generating a surface rendering of the endocasts using unconstrained smoothing for the Chriacus 20 

specimens. Cochlear related measurements were recorded only for the NMMNH P-62258 bony 21 

labyrinth because of the incomplete preservation of this region in MCZ 20676. The volume of 22 

the cochlea was acquired by isolating this structure, using the module “volume edit” in Avizo. 23 
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The stapedial ratio is used as a proxy for the area of the footplate of the stapes, and corresponds 1 

to the maximal length by the maximal width of the fenestra vestibuli (Segall, 1970; Ekdale, 2 

2013; Orliac & O’Leary, 2016). This dimension was obtained for the NMMNH P-62258 left 3 

bony labyrinth only and measured directly on the CT data and not on the 3D model of the inner 4 

ear, as we wanted to measure the rim where the stapes sits and not the fossula rim. We also 5 

measured the cochlear ratio for both NMMNH P-62258 inner ears, which was obtained by 6 

dividing the height by the width of the cochlea (Ekdale & Rowe 2011; Ekdale, 2013). The 7 

cochlear coil, numbers of cochlear turns, the cochlear canal length and the secondary lamina coil 8 

were measured for the NMMNH P-62258 right inner ear only because of the incomplete 9 

preservation of this region in MCZ 20676. In order to estimate the cochlear coil and numbers of 10 

cochlear turns, we referred to Ekdale (2009), who followed the method of Geisler and Luo 11 

(1996). At the base of the cochlea, we drew a line from the intersection between the primary and 12 

secondary bony laminae, and passing through the center of the cochlea. Half a turn was counted 13 

each time the line was crossed. Then an angle was added for the remainder of the cochlear canal 14 

(see Table S1). The number of turns corresponds to the total angle divided by 360°. The cochlear 15 

canal length (= basilar membrane length; Ekdale & Rowe, 2011) was calculated using the 16 

function Spline Probe (Ekdale, 2013) in Avizo. The measurement corresponds to the distance 17 

from the region where the basilar membrane (primary and secondary laminae junction) is visible 18 

to the apex of the cochlea. The secondary lamina coil was calculated in a similar manner to the 19 

cochlear coil (Table S1). The area including the lamina coil corresponds to the extent of the 20 

secondary bony lamina. The laminar gap corresponding to the connection between the primary 21 

and secondary laminae (=basilar membrane) on the cochlear canal (see Meng & Fox, 1995; 22 

Orliac & O’Leary, 2016) was determined on the NMMNH P-62258 left inner ear only. 23 
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Additional dimensions of the semicircular canals were taken on the NMMNH P-62258 and MCZ 1 

20676 left inner ears in Avizo. Angles between each semicircular canal were measured following 2 

Ekdale (2009) and the height and width of each canal was measured using Ekdale’s (2013: fig. 3 

3e) method. The radius of curvature was calculated with the following equation: [0.5*((h+w)/2)] 4 

(Table S1; Spoor & Zonneveld, 1998), where h is the height of the canal and w is the width (see 5 

Ekdale, 2013: fig. 3d). The length of the canals was calculated in a similar manner to the 6 

cochlear length using the function Spline Probe (Ekdale, 2013) in Avizo.  7 

 8 

Paleobiological calculations 9 

Body mass estimation – Body mass is a metric integral to organismal biology, and it is 10 

required to obtain agility scores, hearing frequency limits and the encephalization quotient. There 11 

are many different equations to estimate mammalian body mass based on teeth. Here, we use the 12 

Legendre (1989) and Damuth (1990) equations (Table 1), because the samples used to build the 13 

equations include mammals with a broad array of body masses and dental morphologies. As our 14 

Chriacus specimens preserved complete upper teeth only, we used a sample of other lower m1 15 

specimens from the Nacimiento Formation of New Mexico belonging to Ch. pelvidens and Ch. 16 

baldwini. Length and width (mesial and distal) were taken on 38 specimens for Ch. pelvidens 17 

and 19 specimens for Ch. baldwini by TEW (Tables S2, S3). Two body mass estimates 18 

(minimum and maximum m1 areas) were calculated based on the Legendre (1989) equation and 19 

two (minimum and maximum m1 length) based on the Damuth (1990) equation for each species 20 

(see Tables 1, 2). This gives a range of plausible body masses for Chriacus; we used the average 21 

for each species in the calculations below. 22 
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 Locomotor agility scores – Agility scores were estimated using the equations from Silcox 1 

et al. (2009a) and were obtained for both Ch. pelvidens (NMMNH P-62258) and Ch. baldwini 2 

(MCZ 20676). The equations are presented in Table 1 and include two variables: body mass and 3 

the radius of the semicircular canals (anterior, posterior, lateral and average). These equations are 4 

based on the work of Spoor et al. (2007), which used data from extant mammals (from slow [1] 5 

to fast [6] moving mammals) to estimate the agility scores of fossil specimens. The theory 6 

behind those equations is related to the function of the semicircular canals, which are part of the 7 

vestibular system and play the role of maintaining balance while moving. During head 8 

movements, the endolymph fluid inside the semicircular canals stimulates the hair cells of the 9 

ampulla, which sends a signal to the brain, and in turn stabilizes the head, and more specifically 10 

vision (Muller, 1994; Schwarz & Tomlinson, 1994; Spoor et al. 2007; Silcox et al. 2009a; 11 

Malinzak et al. 2012). The sensitivity of the semicircular canals will be increased with larger arc 12 

size (Oman et al. 1987; Muller, 1994). When body mass is taken into consideration, fast moving 13 

animals such as fast arboreal species have larger canal radius, and consequently higher agility 14 

scores compared to taxa moving more cautiously (Spoor & Zonneveld, 1998; Spoor et al. 2007). 15 

Table S4 includes calculated agility scores for extinct mammals using the four equations (each 16 

canal and average) for comparative purposes.      17 

Hearing frequency – We calculated the low- and high-frequency range for the left ear of 18 

NMMNH P-62258, Ch. pelvidens. Three different equations were used to estimate hearing range. 19 

The equations are summarized in Table 1. West (1985) created equations that take into account 20 

the number of cochlear turns, body mass and basilar membrane length. Rosowski’s (1992) 21 

equations are based on the footplate area (fenestra vestibuli dimensions). The third set of 22 

equations uses solely the basilar membrane length (Rosowski & Graybeal, 1991; Rosowski; 23 
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1992). When sound waves penetrate the ear and stimulate the stapes in the fenestra vestibuli, 1 

endolymphatic and perilymphatic fluids displace the basilar membrane from the base to the apex 2 

of the cochlea. This results in electrical signals transmitted through branches of cranial nerve 3 

VIII to the brain (Ekdale, 2016). The detection of low-frequencies occurs in the apex, while 4 

high-frequencies are detected at the base of the cochlea (Ekdale, 2016). This means that an 5 

increase in cochlear length would improve the sensitivity to low frequencies (Ekdale, 2016). The 6 

basilar membrane is a soft tissue and therefore is not preserved in fossils. Because this membrane 7 

runs throughout the entire cochlea in life, we used cochlear length as a proxy (Ekdale & Rowe, 8 

2011). Table S5 includes calculated hearing frequency for extant and extinct mammals using the 9 

three equations for comparison purposes. 10 

 Agility scores and hearing frequency for Ch. pelvidens were based on NMMNH P-11 

62258, which is a juvenile specimen. Mennecart and Costeur (2016) showed that the morphology 12 

of the inner ear of tragulid ruminants was similar between adult and juvenile specimens. 13 

Therefore, we expect that the morphological and quantitative conclusions obtained here for the 14 

juvenile NMMNH P-62258 should be similar to the results obtained for an adult.  15 

 Encephalization quotient – The encephalization quotient is used to compare brain size 16 

among specimens exhibiting different body masses. This encephalization quotient (EQ = Ei / Ec) 17 

was first proposed by Jerison (1973) and corresponds to the ratio between the actual brain size 18 

(Ei) of a given species (i) and the brain size expected for a hypothetical ‘typical’ mammal of the 19 

same body mass (Ec; Martin, 1990). To obtain the EQ of MCZ 20676, we used Jerison’s (1973) 20 

equation: Ei/(0.12x(Ec)^0.67) and Eisenberg’s (1981) equation: Ei/(0.0553x(Ec)^0.74) for the 21 

calculation of Ec, which are derived from broad taxonomic samples. We provided an EQ range 22 
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for MCZ 20676 to reflect the uncertainty of the body mass (Tables 3, S6). We used the EQs 1 

based on Jerison (1973)’s equation for comparison purposes in Table S6 only. 2 

Neurobiology – Volumes were calculated for two different portions of the cranial 3 

endocast of MCZ 20676, Ch. baldwini. The volume of the olfactory bulbs was obtained in a 4 

similar manner to the cochlear volume, and the petrosal lobules (=paraflocculi) were re-5 

segmented to obtain volumetric measurements. The term petrosal lobule is used over 6 

paraflocculus because it defines more accurately the functional portion of the cerebellum that is 7 

located in the subarcuate fossa. For example, in primates, only a portion of the paraflocculus is 8 

housed in the subarcuate fossa (Gannon et al. 1988; Hiramatsu et al. 2008), while in rodents, the 9 

entire paraflocculus fills the fossa (McClure & Daron 1971; Sakamotoet al. 2017).  10 

For MCZ 20676, the XY dimension was used to isolate the right petrosal lobule. The left 11 

auditory region was too damaged to isolate the petrosal lobule on this side. For the left ear of 12 

NMMNH P-62258, the YZ dimension was used to isolate the petrosal lobule. Because the 13 

neocortex was incomplete, we used neocortical height ratio as a proxy for neocortical surface 14 

area ratio. This method was used by Bertrand et al. (2018a, b) because, in their study, some 15 

specimens lacked a completely preserved neocortex; importantly, they found that neocortical 16 

height was strongly correlated with neocortical surface area ratio in rodents (Table 3).  17 

 18 

Analysis for potential phylogenetically informative characters  19 

Many features of the bony labyrinth likely have phylogenetic significance. In the future, 20 

we will incorporate a suite of neurosensory characters (mainly related to the bony labyrinth) into 21 

the large-scale phylogenetic analysis of mammals that our group is working on, but this is 22 

outside the scope of this paper. Here, to investigate the distribution of major bony labyrinth 23 
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features among early placental mammals and to assess potential synapomorphies, we use a 1 

modified version of the character dataset of Macrini et al. (2013). Like Macrini et al. (2013), we 2 

do not use this limited dataset to perform a phylogenetic analysis here, as the results of an ear-3 

only character analysis likely would not provide an accurate phylogeny. 4 

Our modifications make the dataset more inclusive for understanding the distribution of 5 

inner ear features in early placentals and close relatives. We scored Ch. pelvidens and Ch. 6 

baldwini for the dataset, and also added other taxa: D. ilicis (AMNH VP 16141; Orliac et al. 7 

2012b), Protungulatum sp. (AMNH VP 118359; Orliac & O’Leary, 2016), A. inopinata (MHNC 8 

8372; Muizon et al. 2015), Ca. coarctatus (AMNH 27601) and the litoptern indet. UFRJ-DG 9 

1035-M (Billet et al. 2015; Table 5). We also added several new states for characters to better 10 

encapsulate variation present in early placental mammals, which was not parsed out in the 11 

Macrini et al. (2013) dataset, as it was designed to understand character distribution in 12 

Notoungulata. Based on our observations, we added one new state to each of the following 13 

characters: anterior and lateral ampullae position (#9), utricle and saccule housing (#15), position 14 

of chamber for utricle (in bony labyrinth) when viewed dorsally (#16); and two new states to one 15 

character: diameter of fenestra cochleae relative to that of fenestra vestibuli (#25; Table 6). 16 

Additionally, we modified the coding of some characters for certain taxa, including: Hyopsodus 17 

using H. lepidus (AMNH FM 143783; Ravel & Orliac, 2015); a notoungulate indet. (MNHN-F-18 

BRD 23 of Billet & Muizon, 2013); the notoungulate Notostylops (Macrini et al. 2010); and Ca. 19 

coarctatus (AMNH 27601; see Table 5).  20 

Our modified dataset now includes 25 characters scored for 18 taxa. We elected not to 21 

map the characters onto a pre-existing tree topology because, currently, there is no consensus for 22 
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the phylogenetic position of many of our taxa. Instead, we comment here on similarities between 1 

taxa that could potentially be informative when integrated later into a phylogenetic analysis. 2 

Descriptions and comparisons 3 

Cranial endocast 4 

 The anterior aspect of the cranial endocast of Ch. baldwini (MCZ 20676), including the 5 

forebrain (cerebrum and olfactory bulbs), is slightly crushed dorsoventrally (Figs 3 and 4).  6 

 Olfactory bulbs – In dorsal view, the olfactory bulbs of Ch. baldwini (MCZ 20676; Fig. 7 

4A) have an elliptical shape similar to those of H. lepidus (AMNH FM 143783; Fig. 5C) and A. 8 

inopinata (MHNC 8372; Fig. 5D). This contrasts with D. ilicis (AMNH VP 16141), in which the 9 

olfactory bulbs have a more triangular shape (Fig. 5B). The olfactory bulbs are conjoined in Ch. 10 

baldwini (MCZ 20676; Figs 4A and 5A) and all other compared specimens (Fig. 5). Chriacus 11 

baldwini (MCZ 20676) has olfactory bulbs representing about 6.9% of the total endocranial 12 

volume (Table 3). The volume percentage for the olfactory bulbs of Ch. baldwini (MCZ 20676) 13 

is similar to those of D. ilicis (6.8%; AMNH VP 16141; Orliac & Gilissen, 2012), but lower than 14 

those of H. lepidus (8.6%; Orliac et al. 2012a), and A. inopinata (8.5%; MHNC 8372; Muizon et 15 

al. 2015). The volume of the olfactory bulbs was not recorded for the other specimens. For other 16 

comparisons, the early Eocene ischyromyid rodent Paramys copei (AMNH 4756) has olfactory 17 

bulbs that represent 6.1% (Bertrand et al. 2016) and the early Eocene plesiadapiform Ignacius 18 

graybullianus (USNM 421608) has olfactory bulbs of 5.5% (Silcox et al. 2009b). Overall, Ch. 19 

baldwini (MCZ 20676) and other early placental mammals have, on average, smaller olfactory 20 

bulbs compared to Cretaceous eutherians (8.4-10%; Kielan-Jaworowska, 1984).  21 

The olfactory bulbs are located posterior to the molars and not above them in Ch. 22 

baldwini (MCZ 20676; Fig. 3), Ca. coarctatus (AMNH 27601; Cameron et al. 2019: fig. 2d) and 23 
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Onychodectes tisonensis (AMNH 785; Napoli et al. 2017: fig. 1a). This contrasts with the 1 

condition of D. ilicis (AMNH VP 16141; Bertrand et al. 2016) and H. lepidus (AMNH FM 2 

143783), in which the olfactory bulbs are located above the M3 (See Orliac & Gilissen, 2012: 3 

fig. 1c; Orliac et al. 2012a: fig. 2a). In Paramys copei (AMNH 4756), the olfactory bulbs are 4 

located above the M2, and in I. graybullianus above the M1 (USNM 421608; Silcox et al. 5 

2009b: fig. 1a). This difference might be due to changes in the proportions of the skull between 6 

early placental mammals and more derived groups such as early artiodactyls, rodents and 7 

primates. This could be related to an increase in the size of the braincase compared to the 8 

anterior part of the cranium, or vice versa. Chriacus baldwini (MCZ 20676; Fig. 5I), O. 9 

tisonensis (AMNH 785; Napoli et al. 2017: fig. 2b), A. inopinata (MHNC 8372; Fig. 5L) and H. 10 

lepidus (AMNH FM 143783; Fig. 5K) have longer circular fissures compared to D. ilicis 11 

(AMNH VP 16141; Fig. 5J). This could reflect less anterior expansion of the frontal lobes in 12 

these specimens compared to those of D. ilicis.  13 

Cerebrum and midbrain – The maximum mediolateral width of the cerebrum is greater in 14 

Ch. baldwini (MCZ 20676; Fig. 5A) and H. lepidus (AMNH FM 143783; Fig. 5C) compared to 15 

Ca. coarctatus (AMNH 27601; Cameron et al. 2019: fig. 3c), A. inopinata (MHNC 8372; Fig. 16 

5D) and O. tisonensis (AMNH 785; Napoli et al. 2017: fig. 2c), but lower than in D. ilicis 17 

(AMNH VP 16141; Fig. 5B). On the dorsal suface of the endocast, the area where the midbrain 18 

should be located is not visible because of the poor preservation of this region and the posterior 19 

limit of the cerebrum is not clearly visible in Ch. baldwini (MCZ 20676; see Figs 4 and 5). In A. 20 

inopinata (MHNC 8372), H. lepidus (AMNH FM 143783), and D. ilicis (AMNH VP 16141), the 21 

midbrain is exposed and not covered by the cerebrum (Fig. 5).  22 
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The rhinal fissure represents the separation between the paleo- and the neocortex on the 1 

cerebrum (Martin, 1990). This is a key landmark, because it provides information on the degree 2 

of expansion of the neocortex (Jerison 2012; Long et al. 2015). There is a relationship between 3 

the rhinal fissure and the orbitotemporal canal (sulcus) in rodents, primates and other taxa (e.g. 4 

Novacek, 1986; Martin 1990; Silcox et al, 2010; Bertrand et al. 2018a, b). However, this 5 

relationship is not consistent across Mammalia, and in some cases the rhinal fissure may occupy 6 

a more dorsal position compared to the orbitotemporal canal. In A. inopinata (MHNC 8372), 7 

there is a groove for the orbitotemporal canal (not annotated by Muizon et al. 2015) and dorsal to 8 

it, a ridge presumably marking the rhinal fissure (Muizon et al. 2015: fig. 55). The imprints of 9 

these cranial features are visible on the virtual cranial endocast of A. inopinata (MHNC 8372; 10 

Muizon et al. 2015: fig. 54 d, f). We were able to identify both of these structures in Ch. baldwini 11 

(MCZ 20676; see Figs 4C and 5I). As the neocortical area boundaries were not preserved well 12 

enough to accurately calculate the surface area of the neocortex, we measured the neocortical 13 

height ratio instead. Chriacus baldwini (MCZ 20676) has a neocortical height ratio of 24.9%, 14 

which is similar to that of A. inopinata (20.6%; MHNC 8372). In contrast, H. lepidus (33.4%; 15 

AMNH FM 143783), and D. ilicis (31.3%; AMNH VP 16141) show higher values (Table 3).  16 

Cerebellum – The cerebellum of Ch. baldwini (MCZ 20676; Fig. 5A) is slightly narrower 17 

compared to the width of the cerebrum, which is similar to the condition of A. inopinata (MHNC 18 

8372; Fig. 5D), H. lepidus (AMNH FM 143783; Fig. 5C), D. ilicis (AMNH FM 143933; Orliac 19 

& Gilissen, 2012: fig. S1), and Ca. coarctatus (AMNH 27601; Cameron et al. 2019: fig. 3c). The 20 

anterior boundary of the cerebellum cannot be distinguished in Ch. baldwini (MCZ 20676; Fig. 21 

5A). The vermis and the right petrosal lobule are the only identifiable structures of the 22 

cerebellum in Ch. baldwini (MCZ 20676; Fig. 4). The left petrosal lobule of Ch. pelvidens 23 
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(NMMNH P-62258) is well preserved and undeformed (Fig. 6). Both petrosal lobules have an 1 

elongated shape, which is different from that of early rodents, which have more bulbous petrosal 2 

lobules (paraflocculi in Bertrand et al. 2018a). The petrosal lobule volumes of MCZ 20676 and 3 

NMMNH P-62258 are 3.4 mm3 and 3.9 mm3, respectively. The petrosal lobule percentage was 4 

calculated for MCZ 20676 and corresponds to ~0.13% of the total endocranial volume (Table 3). 5 

Two petrosal lobules would potentially represent 0.25% of the total endocranial volume, which 6 

is similar to the “condylarth” H. lepidus (AMNH FM 143783; 0.24%), the cladothere Vincelestes 7 

neuquenianus (0.23%; Macrini, 2006) and the mammaliform Hadrocodium wui (0.28%; Macrini, 8 

2006), but below the range of early ischyromyid rodents (0.4% to 1.3%; Bertrand et al. 2018a), 9 

the artiodactyl D. ilicis (AMNH VP 16141; 0.78%), and the multituberculate Kryptobaatar 10 

dashzevegi (4.04%; Macrini, 2006). The petrosal lobule percentage was not calculated for A. 11 

inopinata (MHNC 8372; Muizon et al. 2015). 12 

Cranial nerves and blood vessels – The preservation of fine features is limited on the 13 

ventral region of the endocast; however, several cranial nerve and blood vessel casts can be 14 

identified. The casts of the foramina for the optic nerves are visible in Ch. baldwini (MCZ 15 

20676; Figs 4B and 5E) and have a similar position to those of A. inopinata (MHNC 8372; Fig. 16 

5H). The primitive condition for placentals is a fusion between the foramen rotundum and the 17 

sphenorbital fissure, that is, there is no separate opening for cranial nerve V2 (maxillary nerve)  18 

(O’Leary et al. 2013). Based on the preservation of MCZ 20676, it is impossible to determine 19 

whether the foramen rotundum (cranial nerve V2, maxillary nerve) is confluent with the 20 

sphenorbital fissure (ophthalmic veins and cranial nerves III [oculomotor], IV [trochlear], V1 21 

[ophthalmic], and VI [abducens]) in Ch. baldwini (Figs 4B and 5E). Alcidedorbignya inopinata 22 

(MHNC 8372; Fig. 5H) and Ca. coarctatus (AMNH 27601; Cameron et al. 2019: fig. 3e) exhibit 23 
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two separate foramina that appear to join anteriorly in a common fossa. This seems to contrast 1 

with the condition of D. ilicis (AMNH VP 16141; Fig. 5F) and H. lepidus (AMNH FM 143783; 2 

Fig. 5G), which have a single opening, and thus a confluent foramen rotundum and sphenorbital 3 

fissure.  4 

The mandibular nerve (V3) would have passed through the foramen ovale in life and is 5 

visible in Ch. baldwini (MCZ 20676; Figs 4B and 5E), A. inopinata (MHNC 8372; Fig. 5H), Ca. 6 

coarctatus (AMNH 27601; Cameron et al. 2019: fig. 3e), H. lepidus (AMNH FM 143783; Fig. 7 

5G) and D. ilicis (AMNH VP 16141; Fig. 5F). Casts of the internal auditory meatus, with 8 

passageways for cranial nerves VII (facial) and VIII (vestibulocochlear), are visible but not well 9 

preserved in Ch. baldwini (MCZ 20676; Figs 4B and 5E); however, the casts for these nerves are 10 

undeformed in the Ch. pelvidens left petrosal (NMMNH P-62258; Fig. 6E). The cochlear branch 11 

of cranial nerve VIII is relayed through the modiolus of the cochlea (Gray, 1907; Ekdale, 2016). 12 

The position of these casts is similar to the ones of Ca. coarctatus (AMNH 27601; Cameron et 13 

al. 2019: fig. 3e), H. lepidus (AMNH FM 143783; Fig. 5G), D. ilicis (AMNH VP 16141; Fig. 14 

5F) and O. tisonensis (AMNH 785; Napoli et al. 2017: fig. 2b). The casts for nerves VII and VIII 15 

were not traced in A. inopinata (MHNC 8372; Muizon et al. 2015). The cast of the jugular 16 

foramen, which corresponds to the passageway of the internal jugular vein and cranial nerves IX 17 

(glossopharyngeal), X (vagus), and XI (accessory), is positioned ventral to the posterior end of 18 

the petrosal lobule in Ch. baldwini (MCZ 20676; Figs 4B and 5E) and in the other compared 19 

specimens (Fig. 5). A single hypoglossal foramen for cranial nerve XII (hypoglossal) is preserved 20 

on each side of the endocast of Ch. baldwini (MCZ 20676; Figs 4B and 5E). This foramen is 21 

visible and has a similar position in H. lepidus (AMNH FM 143783; Fig. 5G).   22 
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Casts for vessels (arteries and veins) are not preserved in Ch. baldwini (MCZ 20676), 1 

except for part of the superior sagittal sinus, which is not clearly defined because of poor 2 

preservation (Fig. 4A). The superior sagittal sinus is clearly visible in better preserved specimens 3 

such as those of D. ilicis (AMNH VP 16141; Fig. 5B), H. lepidus (AMNH FM 143783; Fig. 5C), 4 

and A. inopinata (MHNC 8372; Fig. 5D). 5 

 6 

Bony labyrinth endocast  7 

Both bony labyrinths of NMMNH P-62258, as well as those of the MCZ 20676 cranium, 8 

were segmented, because certain areas were better preserved on one side compared to the other. 9 

The right bony labyrinth of NMMNH P-62258 is more complete in terms of the semicircular 10 

canals, whereas the cochlea is better preserved in the left bony labyrinth of the same specimen 11 

(Fig. 7). The cochlea is not well preserved in MCZ 20676, but the semicircular canals are 12 

complete on the left side (Fig. 8).  13 

Cochlear canal – The membranous cochlea is housed in a bony structure called the 14 

cochlear canal. The length of the spiral cochlear canal is 12.3 mm for the right bony labyrinth of 15 

Ch. pelvidens (NMMNH P-62258), which is the longest among early placental mammals 16 

sampled (Table 4). This value is high but close to the canal length of A. inopinata (MHNC 8399) 17 

and H. lepidus (AMNH FM 143783), which measure 10.9 and 10.1 mm, respectively. The right 18 

bony labyrinth of Ch. pelvidens (NMMNH P-62258) exhibits 1.87 cochlear turns with a rotation 19 

of 672°, which is higher than in other sampled early placental mammals, except the Eocene D. 20 

ilicis (AMNH VP 16141) and H. lepidus (AMNH FM 143783), which display 2.04 (736°) and 21 

2.2 (792°) cochlear turns, respectively (Table 4). The cochlear aspect ratio of Ch. pelvidens 22 
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(NMMNH P-62258) is 0.53 (left bony labyrinth) and 0.54 (right bony labyrinth), which is 1 

similar to that of D. ilicis (AMNH VP 16141; 0.64) and Protungulatum sp. (AMNH VP 118359; 2 

0.51), and contrasts with both specimens of A. inopinata, which exhibit flatter cochleae (0.40, 3 

MHNC 8399 and 0.48, MHNC 8360; Table 4). Overall, these values are lower compared to H. 4 

lepidus (AMNH FM 143783; 0.77) and Ca. coarctatus (AMNH 27601; 0.7). The basal and 5 

apical turns of the cochlear canals are not in contact in both the right and left bony labyrinths of 6 

Ch. pelvidens (NMMNH P-62258; Figs 7D and 9D), which is similar to the condition in Ca. 7 

coarctatus (AMNH 27601; Fig. 9X), A. inopinata (MHNC 8399; Fig. 9T), D. ilicis (AMNH VP 8 

16141) and H. lepidus (AMNH FM 143783; Fig. 9L). This condition contrasts with that of 9 

Protungulatum sp. (AMNH VP 118359), in which the turns of the cochlear canal are in contact 10 

(Fig. 9P). Chriacus pelvidens (NMMNH P-62258) has a stapedial ratio of 2.02, which is similar 11 

to that of Protungulatum sp. (AMNH VP 118359; 2.1) and the average value for the Cretaceous 12 

eutherian Kulbeckia kulbecke (2.0). All other specimens, including D. ilicis (AMNH VP 16141; 13 

1.78) and H. lepidus (AMNH FM 143783; 1.44), have a stapedial ratio below 2.0 (see Table 4). 14 

In life, the primary (inner) bony lamina and the secondary (outer) bony lamina would 15 

partially divide the scala tympani from the scala vestibuli of the cochlear canal (Meng & Fox, 16 

1995). The scala tympani communicates with the fenestra cochleae, while the scala vestibuli 17 

connects to the fenestra vestibuli (Ekdale, 2016). These laminae are visible on the bony labyrinth 18 

endocast of Ch. pelvidens (NMMNH P-62258) and Ch. baldwini (MCZ 20676; Figs 7, 8, 9, and 19 

S3). The secondary bony lamina is usually present among therians but might be absent in some 20 

cases (Meng & Fox, 1995; Ekdale, 2009). This bony lamina starts slightly before the fenestra 21 

cochleae, as illustrated by Ekdale (2009; fig. 4.1a), and extends far into the canal beyond the first 22 

half of the basal turn until 380.7° of this turn, and represents 57% of the total cochlear coil in 23 
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NMMNH P-62258. The basal part of the cochlea is not preserved well enough in the left bony 1 

labyrinth of MCZ 20676 to obtain a measure of the secondary bony lamina; however, the 2 

secondary bony lamina visibly extends even farther into the canal of this specimen, suggesting 3 

the measurement found for in NMMNH P-62258 can be considered a minimum. The secondary 4 

bony lamina also extends far into the canal in Protungulatum sp. (AMNH VP 118359; 340°, 5 

61%) in a similar fashion to MCZ 20676 (Fig. 9P). This contrasts with other compared 6 

specimens, which show lesser expansion of the secondary lamina coil (Table 4). The primary 7 

bony lamina is also visible in Ch. pelvidens (NMMNH P-62258 and MCZ 20676), 8 

Protungulatum sp. (AMNH VP 118359), H. lepidus (AMNH FM 143783), A. inopinata (MHNC 9 

8399), and D. ilicis (AMNH VP 16141; Fig. 9). The lamina gap between the primary and the 10 

secondary bony laminae becomes progressively wider and then narrower towards the apex in Ch. 11 

pelvidens (NMMNH P-62258), which contrasts with the condition of Protungulatum sp. (AMNH 12 

VP 118359), A. inopinata (MHNC 8399; MHNC 8360), and Cretaceous eutherians, which have 13 

a wider lamina gap closer to the apex (see Ekdale & Rowe, 2011: fig. 5; Orliac & O’Leary, 14 

2016). Nevertheless, caution should be used when interpreting lamina gap measurements 15 

because the state of preservation of the primary bony lamina in Ch. pelvidens (NMMNH P-16 

62258) is incomplete along the cochlear canal. As the bony labyrinth of Ch. baldwini (MCZ 17 

20676) is filled with a white dense material, it is not possible to identify the lamina gap in the CT 18 

data of this specimen. This measurement was not recorded for D. ilicis (AMNH VP 16141) and 19 

H. lepidus (AMNH FM 143783).  20 

The aperture of the cochlear fossula leading to the fenestra cochleae (e.g. MacPhee, 1981; 21 

Wible et al. 2007, 2009; Billet & Muizon, 2013; Muizon et al. 2015) and the cochlear fossula are 22 

visible on the bony labyrinth endocast in Ch. pelvidens (NMMNH P-62258; Fig. 9C), as in 23 
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Protungulatum sp. (AMNH VP 118359; Fig. 9O; Orliac & O’Leary, 2016: fig. 2f), A. inopinata 1 

(MHNC 8399; Fig. 9S; Muizon et al. 2015: fig. 52b), an early notoungulate MNHN-F-BRD 23 2 

(Billet & Muizon, 2013: fig. 5b), and a litoptern UFRJ-DG 119-M (Billet et al. 2015: fig. 7c). 3 

Neither feature could be identified in D. ilicis (AMNH VP 16141; Orliac et al. 2012a: fig. 2e) 4 

and H. lepidus (AMNH FM 143783; Ravel & Orliac, 2015: fig. 2d); therefore, we annotated this 5 

region, the fenestra cochleae, for both specimens (Fig. 9G, K). The cochlear fossula is also not 6 

visible on bony labyrinth endocasts in Cretaceous eutherians (Ekdale, 2009; Ekdale & Rowe, 7 

2011: figs, 3b, 6c). However, as noted by Orliac and O’Leary (2016), better-preserved specimens 8 

would be required to confirm their absence in D. ilicis and H. lepidus. The fenestra cochleae in 9 

Protungulatum sp. (AMNH VP 118359; Fig. 9O), D. ilicis (AMNH VP 16141; Fig. 9G) and H. 10 

lepidus (AMNH FM 143783; Fig. 9K) extends posteriorly beyond the posterior semicircular 11 

canal (PSC), similar to the fenestra cochleae of Ch. pelvidens (NMMNH P-62258; Fig. 9C). This 12 

contrasts with the condition of A. inopinata (MHNC 8399; Fig. 9S), in which the fenestra 13 

cochleae does not extend posteriorly beyond the PSC. The horseshoe-shaped outpocketing of the 14 

cochlear fossula, which is lateral to the base of the cochlear aqueduct in Protungulatum sp. 15 

(AMNH VP 118359; Fig. S4D) and litoptern indet. (UFRJ-DG 119-M; Fig. S4E), is absent in 16 

Ch. pelvidens (NMMNH P-62258; Fig. S4A), D. ilicis (AMNH VP 16141; Fig. S4B) and H. 17 

lepidus (AMNH FM 143783; Fig. S4C). This feature could not be determined in A. inopinata 18 

(MHNC 8399). However as previously mentioned, this could be related to limited preservation 19 

of this region in D. ilicis, H. lepidus (Orliac & O’Leary, 2016) and Ch. pelvidens. These different 20 

features could not be identified for the bony labyrinths of Ch. baldwini (MCZ 20676) because of 21 

the lack of preservation of this region (Fig. 8). 22 
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The cochlea represents a higher volume percentage compared to the vestibular apparatus 1 

portion in Ch. pelvidens (NMMNH P-62258; 62.3%), H. lepidus (AMNH FM 143783; 62.5%), 2 

Protungulatum sp. (AMNH VP 118359; 60.8%), D. ilicis (AMNH VP 16141; 55.5%), whereas 3 

the two are approximately equal in A. inopinata (MHNC 8399; MHNC 8360; 45-50%). 4 

Cretaceous eutherians cover the range of variation for cochlear volume percentage of placental 5 

mammals from our sample (47.9-66.1%; Table 4). This measure was not obtained for Ch. 6 

baldwini (MCZ 20676) because of the incompleteness of the cochleae on both sides (Fig. 8). 7 

Vestibule – The vestibular apparatus of Ch. pelvidens (NMMNH P-62258) and Ch. 8 

baldwini (MCZ 20676) is similar in overall morphology to that of other early placental mammals 9 

and close relatives: Protungulatum sp. (AMNH VP 118359), D. ilicis (AMNH VP 16141), H. 10 

lepidus (AMNH FM 143783), A. inopinata (MHNC 8399; MHNC 8360), litopterns (UFRJ-DG 11 

119-M), Ca. coarctatus (AMNH 27601), and Cretaceous eutherians (Ekdale & Rowe, 2011). All 12 

the aforementioned specimens, including Ch. pelvidens (NMMNH P-62258) and Ch. baldwini 13 

(MCZ 20676), have a second common crus (Fig. 9). The vestibular aqueduct bony channel is 14 

visibly better preserved in Ch. pelvidens NMMNH P-62258 (Fig. 7B) than in Ch. baldwini 15 

(MCZ 20676), in which only the root of the vestibular aqueduct can be identified (Fig. 8B). In 16 

Ch. pelvidens (NMMNH P-62258), and in Ch. baldwini (MCZ 20676), the root of the vestibular 17 

aqueduct starts next to the base of the common crus, close to the posterior ampulla (Figs 7B and 18 

8B), and this is similar to the condition of Protungulatum sp. (AMNH VP 118359; Fig. 9M) and 19 

the litoptern UFRJ-DG 119-M (Orliac & O’Leary, 2016: fig. 3l). Chriacus baldwini (MCZ 20 

20676) exhibits a bulge at the base of the vestibular aqueduct (Fig. 8B) as in Protungulatum sp. 21 

(AMNH VP 118359; Fig. 9M) and the litoptern UFRJ-DG 119-M (Orliac & O’Leary, 2016: fig. 22 

3l). This area is not preserved well enough in Ch. pelvidens (NMMNH P-62258; Fig. 7B). This 23 
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contrasts with Ca. coarctatus (AMNH 27601; Fig. 9U), A. inopinata (MHNC 8399; Fig. 9Q) and 1 

D. ilicis (AMNH VP 16141; Fig. 9E), in which the vestibular aqueduct starts higher on the 2 

common crus.  3 

The passageway for the inferior vestibular nerves corresponds to the foramen singulare, 4 

which is ventral to the posterior ampulla (Wible, 2008, 2010; Billet & Muizon, 2013; Muizon et 5 

al. 2015; Orliac & O’Leary, 2016). This foramen is visible in both bony labyrinths of Ch. 6 

pelvidens (NMMNH P-62258; Fig. 9A), and in Ch. baldwini (MCZ 20676; Fig. 8b), 7 

Protungulatum sp. (AMNH VP 118359; Fig. 9M), D. ilicis (AMNH VP 16141; Fig. 9E), H. 8 

lepidus (AMNH FM 143783; Fig. 9I) and A. inopinata (MHNC 8399; Fig. 9Q).  9 

The elliptical (membranous utricle) and spherical (membranous saccule) recesses form 10 

two distinct swellings ventral to the anterior ampulla in Ch. pelvidens (NMMNH P-62258; Fig. 11 

9a), and Ch. baldwini (MCZ 20676; Fig. 8B), which is similar to that of Protungulatum sp. 12 

(AMNH VP 118359; Fig. 9M) and D. ilicis (AMNH VP 16141; Fig. 9E), but is less pronounced 13 

in H. lepidus (AMNH FM 143783; Fig. 9I). The distinction between these two structures could 14 

not be identified in Ca. coarctatus (AMNH 27601), litopterns (e.g. UFRJ-DG 1035-M) and A. 15 

inopinata (MHNC 8399; MHNC 8360), and are probably housed in a common chamber. Finally, 16 

the fenestra cochleae is positioned posteromedial to the fenestra vestibuli and is directed laterally 17 

relative to the PSC in all specimens (Fig. 9). The fenestrae cochleae and vestibuli are not 18 

preserved in Ch. baldwini (MCZ 20676; Fig. 8). 19 

Semicircular canals – Measurements of the semicircular canals are presented in Tables 4 20 

and S4. The semicircular canals are complete in the left bony labyrinth, but not in the right bony 21 

labyrinth, of NMMNH P-62258 (Fig. 7) and in MCZ 20676 (Fig. 8). The angle between the 22 

lateral semicircular canal (LSC) and the basal turn of the cochlea is higher in Ch. pelvidens 23 
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(NMMNH P-62258; ~30°), Ch. baldwini (MCZ 20676; ~25°), Ca. coarctatus (AMNH 27601; 1 

29°), and zhelestids (average value of 34°) compared to A. inopinata (MHNC 8399, 35.9°; 2 

MHNC 8360; 23.1°), D. ilicis (AMNH VP 16141; 13°), H. lepidus (AMNH FM 143783; 20°), 3 

and various Cretaceous eutherians (Table 4). The widest angle is between the anterior (ASC) and 4 

posterior (PSC) semicircular canals in Ch. pelvidens (NMMNH P-62258; 93.5°) and in Ch. 5 

baldwini (MCZ 20676; 95.8°), which is similar to D. ilicis (AMNH VP 16141; 95°), Ca. 6 

coarctatus (AMNH 27601; 90°) and Cretaceous eutherians except Kulbeckia kulbecke (Ekdale & 7 

Rowe, 2011; 93.6°-105°). In other taxa, the widest angle can be between the lateral (LSC) and 8 

posterior (PSC) canals (e.g., Protungulatum sp., AMNH VP 118359) or between the LSC and 9 

the PSC, as well as, the ASC and the LSC (H. lepidus; AMNH FM 143783). There is more 10 

variation in terms of the shortest angle between canals in our sample. The shortest angle is 11 

between the ASC and the LSC in Ch. pelvidens (NMMNH P-62258; 85.8°) and in Ch. baldwini 12 

(MCZ 20676; 83°), which is similar to that of D. ilicis (AMNH VP 16141; 73°), Protungulatum 13 

sp. (AMNH VP 118359; 74°), A. inopinata (MHNC 8399; 83.7°), Zalambdalestes lechei (81.0°) 14 

and zhelestids (Ekdale & Rowe, 2011; 88.8°). In other taxa, the shortest angle is between the 15 

ASC and the LSC, as well as, the LSC and the PSC (e.g., Carsioptychus coarctatus, AMNH 16 

27601; Table 4), between the ASC and the PSC (i.e., A. inopinata, MHNC 8360), or between the 17 

ASC and the LSC, as well as, the ASC and the PSC (i.e., Kulbeckia kulbecke; Ekdale & Rowe, 18 

2011).  19 

Of the three canals, the ASC has the largest radius in Ch. pelvidens (NMMNH P-62258) 20 

and in Ch. baldwini (MCZ 20676), which is similar to all other early placental mammals and 21 

Cretaceous eutherians (Table 4). The canal with the shortest radius is the LSC in Ch. pelvidens 22 

(NMMNH P-62258), Ch. baldwini (MCZ 20676), Protungulatum sp. (AMNH VP 118359), D. 23 



32 
 

ilicis (AMNH VP 16141), H. lepidus (AMNH FM 143783) and all Cretaceous eutherians (Table 1 

4). This contrasts with A. inopinata (MHNC 8399) and Ca. coarctatus (AMNH 27601), in which 2 

the shortest radii are for the LSC and the PSC. In terms of the length, the PSC is the longest 3 

canal for Ch. pelvidens (NMMNH P-62258), as in Ca. coarctatus (AMNH 27601), which differs 4 

from Ch. baldwini (MCZ 20676) and other early placental mammals and Cretaceous eutherians, 5 

which have the ASC as the longest canal (Table 4). The shortest canal is the LSC for Ch. 6 

pelvidens (NMMNH P-62258), Ch. baldwini (MCZ 20676), all other early placental mammals 7 

and Cretaceous eutherians except A. inopinata (MHNC 8399), in which the PSC is the shortest 8 

one (Table 4). 9 

The ratios between the height and width of the canals are close to 1 in Ch. pelvidens 10 

(NMMNH P-62258) and in A. inopinata (MHNC 8399). Chriacus baldwini (MCZ 20676) 11 

displays a similar condition, but its LSC dimensions deviate slightly from the above taxa, with a 12 

ratio of 0.8. In general, the ratios of the height vs. width for the different canals in all specimens 13 

are around 1.0-1.1. Only D. ilicis (AMNH VP 16141; ratio of 0.8 [PSC and LSC]), and Ca. 14 

coarctatus (AMNH 27601; ratio of 1.2 [PSC] and 1.3 [LSC]) show a deviation from this 15 

observation for the PSC and the LSC. The height and width ratio of the ASC is constantly close 16 

to 1.0-1.1 in all specimens (Table 4). 17 

Blood vessels – Blood vessels, including veins and arteries, can be identified in both bony 18 

labyrinths of Ch. pelvidens (NMMNH P-62258; Fig. 7) but not in Ch. baldwini (MCZ 20676; 19 

Fig. 8). The labyrinthine artery is a branch of the anterior inferior cerebellar artery that provides 20 

blood supply to the cochlea (Gray, 1918). Inside the mammalian cochlea, the spiral modiolar 21 

artery distributes the blood (Axelsson & Ryan, 1988). In Ch. pelvidens (NMMNH P-62258), the 22 

cast for the spiral modiolar artery as well as its arterioles are visible departing from the base to 23 
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the apex of the cochlea around the modiolus (Figs 7; S3). A similar, or even finer, level of 1 

preservation is seen in Protungulatum sp. (AMNH VP 118359; see Orliac & O’Leary, 2016: fig. 2 

2d). The cast of the spiral modiolar vein is also visible in Ch. pelvidens (NMMNH P-62258; Figs 3 

7D, S3); however, it is not as well preserved as in Protungulatum sp. (AMNH VP 118359; 4 

Orliac & O’Leary, 2016: fig 2d) or in Diplobune minor (UM ITD 1081; Orliac et al., 2017: fig. 5 

7c, d). The vena aquaeductus cochleae is visible in Ch. pelvidens (NMMNH P-62258; Fig. 7B). 6 

Venules radiating from the spiral modiolar vein are present on the basal turn of the cochlear 7 

canal (Fig. 7D). In life, the spiral modiolar vein drained into the vena aquaeductus cochleae 8 

(Axelsson & Ryan, 1988). As in Protungulatum sp. (AMNH VP 118359; Orliac & O’Leary, 9 

2016: fig 2d), and in Diplobune minor (UM ITD 1081; Orliac et al., 2017: fig. 7c), the vena 10 

aquaeductus cochleae is a separate canal from the cochlear aqueduct in Ch. pelvidens (see Fig. 11 

7B). The structure of the vessels is similar in zhelestids (Ekdale & Rowe, 2011). 12 

 13 

Quantitative analyses 14 

Hearing range 15 

Three different equations were used to determine the hearing range of Ch. pelvidens (see Table 16 

1). The hearing frequency range of our specimen (NMMNH P-62258) is between 0.32 and 40.29 17 

kHz with the equation from West (1985), 0.64-40.26 with Rosowski (1992), and 0.64-46.22 with 18 

Rosowski & Graybeal (1991) and Rosowski (1992). We visually compared the hearing 19 

frequency of Ch. pelvidens, calculated using the equation from West (1985), with that of other 20 

extant and extinct taxa (see Fig. 10; Table S5). Chriacus pelvidens had a hearing frequency range 21 

close to that of the extant aardvark (Orycteropus afer) and nine-banded armadillo (Dasypus 22 

novemcinctus) as well as that of the fossil taxon H. lepidus (AMNH 143783; see Fig. 10). 23 
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Chriacus pelvidens (NMMNH P-62258) and H. lepidus (AMNH FM 143783) had very similar 1 

low frequency hearing limits: 0.32 and 0.33, respectively. However, H. lepidus (AMNH FM 2 

143783) was able to hear higher frequency sounds compared to our specimen of Ch. pelvidens 3 

(Table S5; Fig. 10). Chriacus pelvidens (NMMNH P-62258) also had a lower high-frequency 4 

hearing limit compared to both the potential stem euungulate Protungulatum sp. (AMNH VP 5 

118359) and the early artiodactyl D. ilicis (AMNH VP 16141), as well as A. inopinata (MHNC 6 

8360), Ca. coarctatus (AMNH 27601), and Cretaceous eutherians (Table S5; Fig. 10). Chriacus 7 

pelvidens also had a range of hearing in octaves (7.0) close to those of the large slit-faced bat 8 

(Nycteris grandis; 7.05) and the Virginia opossum (Didelphis virginiana; 7.15; see Table S5; 9 

Fig. 10).  10 

 11 

Locomotor agility 12 

 Agility scores (AS) were obtained for Ch. pelvidens (NMMNH P-62258) and Ch. 13 

baldwini (MCZ 20676) based on the equations from Silcox et al. (2009a). Chriacus pelvidens 14 

(NMMNH P-62258) and Ch. baldwini (MCZ 20676) had average agility scores that ranged 15 

between 2.62 and 3.45 and 2.09-2.86, respectively, depending on the canal and body mass 16 

measures (BM) used in the equation (see Tables 2, S4). This suggests that Ch. pelvidens 17 

(NMMNH P-62258) and Ch. baldwini (MCZ 20676) were slow-to-medium moving mammals. 18 

Using the semicircular canal average (SC), Ch. pelvidens (NMMNH P-62258) overlaps with A. 19 

inopinata (MHNC 8399), and Ch. baldwini (MCZ 20676) with Ca. coarctatus (AMNH 27601; 20 

Fig. 11). Extant mammals (data from Spoor et al. 2007) that have similar agility scores for the 21 

highest body mass range of Ch. pelvidens (NMMNH P-62258) are, for example, the American 22 

badger (Taxidea taxus, BM=7190 g; AS=3) or the crab-eating raccoon (Procyon cancrivorus, 23 
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BM=6994 g; AS=3). This result contrasts with the agility scores obtained with the lowest body 1 

mass estimate for Ch. pelvidens (NMMNH P-62258). In this scenario, Ch. pelvidens (NMMNH 2 

P-62258) is in the range of Protungulatum sp. (AMNH VP 118359), H. lepidus (AMNH FM 3 

143783), and D. ilicis (AMNH VP 16141), as well as plesiadapiform primates (Silcox et al. 4 

2009a; Fig. 11). Compared to extant taxa (data from Spoor et al. 2007), this means that Ch. 5 

pelvidens (NMMNH P-62258) would have had an agility closer to that of mammals such as the 6 

dwarf armadillo (Zaedyus pichiy, BM=1740 g; AS=3). Using the average body mass for Ch. 7 

pelvidens indicates an agility closer to that of the raccoon dog (Nyctereutes procyonoides 8 

viverrinus, BM=4500 g; AS=3). For Ch. baldwini (MCZ 20676), extant mammals of similar 9 

body mass estimates with similar agility scores are the northern common cuscus (Phalenger 10 

orientalis, BM=2500 g; AS=2) and the crested rat (Lophiomys imhausi, BM=755 g; AS=2). The 11 

agility score of Ch. baldwini (MCZ 20676) is lower than those of extant artiodactyls of similar 12 

body masses, such as the water deer (Hydropotes inermis, BM=1285g) and Java mouse-deer 13 

(Tragulus javanicus, BM=2000g), which are 4 (Cox & Jeffery, 2010). 14 

 15 

Brain size and Encephalization Quotient 16 

 The endocranial volume of Ch. baldwini (MCZ 20676) is 2699 mm3 (Table 3). Based on 17 

Eisenberg’s (1981) equation, the EQ of Ch. baldwini (MCZ 20676) is between 0.12-0.41 18 

depending on which body mass value is used (Table 2). This is higher than the range of values 19 

obtained for O. tisonensis (AMNH 785; 0.08-0.10), lower than the EQ of D. ilicis (AMNH VP 20 

16141; 0.54-0.79), but overlaps with A. inopinata (MHNC 8372; 0.36-0.49) and is in the low 21 

range of EQ variation of H. lepidus (AMNH FM 143783; 0.34-0.70; Table 3). Cameron et al. 22 

(2019) hypothesized that Paleocene ‘archaic’ placentals may have had abnormally low EQ 23 
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values compared to extant placentals, and perhaps even to their Mesozoic antecedents. The low 1 

EQ results for Ch. baldwini are consistent with this hypothesis, which remains to be tested 2 

statistically with a much larger sample. This will be the subject of future work from our research 3 

group. 4 

 5 

Discussion 6 

The senses and behavior of Chriacus 7 

Based on the available data, Ch. baldwini probably heavily relied on its sense of smell, 8 

compared to the other major senses that we are able to study. Regarding vision, both the petrosal 9 

lobules and the visual cortex contribute to this sense. Of these, only the petrosal lobules can be 10 

identified in both Ch. pelvidens and Ch. baldwini. These cerebellar structures play a role in the 11 

control of eye movements, also known as vestibulo-occular reflex (VOR; Rambold et al. 2002). 12 

Large petrosal lobules are present in more active and visually oriented animals, such as arboreal 13 

squirrels, compared to more slow-moving and fossorial taxa like the mountain beaver 14 

(Aplodontia rufa; Bertrand et al. 2017, 2018b). The average petrosal volume percentage is 15 

0.96%, with a range of 0.01-2.34%, for 49 species of mammals (Ferreira-Cardoso et al. 2017), 16 

and 1.78%, with a range of 0.39-3.35%, for 33 Ischyromyidae and Sciuroidea rodent species 17 

(Bertrand et al. 2018b). This suggests that the petrosal lobules of Ch. baldwini can be considered 18 

small (0.26% of brain volume), and thus that this species probably had a lower vestibulo-occular 19 

reflex compared to those of more active and visually oriented mammals. 20 

The visual cortex localized in the occipital lobe of the neocortex (Martin, 1990) also 21 

contributes to vision. An expanded neocortex has been associated with improved vision in 22 

primates and rodents because the posterior region of this structure, where the visual cortex is 23 
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located, is expanded and covers the midbrain (Silcox et al. 2010; Bertrand et al. 2018b). Because 1 

this region of the brain is not preserved in Ch. baldwini, it is impossible to determine with 2 

certitude whether the cerebrum was covering the midbrain. However, thus far, no fossil 3 

mammals from the Mesozoic or Paleocene have been found with an expanded cerebrum 4 

covering the midbrain (Edinger, 1964; Silcox et al. 2011; Muizon et al. 2015), so it seems 5 

unlikely that Ch. baldwini would have had this condition.  6 

Concerning olfaction, the average olfactory bulb volume percentage is 3.47% (range: 7 

1.64-6.05%) for 33 Ischyromyidae and Sciuroidea rodent species (Bertrand et al., 2018b), and 8 

1.38% (range: 0.01-7.80%) for 51 species of primates (i.e., plesiadapiforms and euprimates; 9 

Bertrand et al., 2017). Therefore, the olfactory bulbs of Ch. baldwini can be considered large 10 

(6.9%) when compared to the olfactory bulbs of those taxa, and suggest a high reliance on 11 

olfaction.  12 

Chriacus pelvidens was able to hear the same range of high frequencies as the extant 13 

aardvark and the nine-banded armadillo; however, both extant species can hear lower frequency 14 

sounds compared to what Ch. pelvidens likely was capable of hearing. Moreover, the armadillo 15 

and H. lepidus have a higher frequency hearing limit compared to that of Chriacus. 16 

Early Paleocene mammals filled many different niches, similar to their Mesozoic 17 

ancestors (Luo, 2007), but differed in that they had a much larger range of body sizes; 18 

particularly, there were much larger species than before the end-Cretaceous mass extinction 19 

(Alroy, 1999; Slater et al. 2013). Locomotor behaviors are best reconstructed for fossil taxa 20 

using postcranial elements, when available (e.g. Carrano, 1999, Chester et al. 2017). A large 21 

amount of postcranial fossils has been described for Chriacus, including postcrania of Ch. 22 

baldwini and Ch. gallinae by Matthew (1897, 1915) and postcrania of Ch. orthogonius by Szalay 23 
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and Lucas (1996). Rose (1987) described the most complete skeleton of Chriacus, but because 1 

no teeth were found in association, it could not be identified to the species level and was referred 2 

to as Chriacus sp. Rose (1987) argued that this skeleton was indicative of a highly arboreal 3 

animal, similar to some extant procyonid and viverrid carnivorans, which was different from the 4 

locomotor mode that would have been expected for an ungulate ancestor. Rose (1990) later 5 

described more material of an indeterminate species of Chriacus that looked like it belonged to a 6 

more scansorial animal, but still with some arboreal capabilities. Finally, Rose (1996) described 7 

teeth and associated postcrania belonging to Ch. truncatus (= Ch. baldwini) that showed 8 

cursorial adaptations closer to early ungulates such as Diacodexis. This conflicting literature and 9 

the unsettled taxonomy and relationships of the numerous species of Chriacus suggest that either 10 

the genus Chriacus was highly variable in its locomotor behaviors, or that the many species of 11 

Chriacus may not be closely related, but instead belong to an array of species of varying 12 

phylogenetic position and biological attributes. 13 

Focusing specifically on the Ch. pelvidens specimens we are studying, we cannot use the 14 

extremely fragmentary postcranial material associated with NMMNH P-62258 to assess 15 

locomotor behavior. Furthermore, these scrappy postcranial elements are the only postcranial 16 

bones yet recovered or recognized as belonging to Ch. pelvidens. Thus, we must rely on the 17 

semicircular canals of the bony labyrinth to shed light on the locomotion and agility of this 18 

species. Depending on the body mass used in the calculation of the agility score, Ch. pelvidens 19 

was more agile than Ca. coarctatus but less than Protungulatum sp. (if a high body mass 20 

estimate is used), or was as agile as Protungulatum sp., H. lepidus and D. ilicis (when using a 21 

low body mass estimate). The postcrania described for Ch. baldwini by Rose (1996) revealed 22 

that this particular species may have been cursorial similar to artiodactyls. Extant artiodactyls of 23 
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a similar body mass such as Hydropotes inermis (water deer) and Tragulus javanicus (Java 1 

mouse-deer) have an agility score of 4, which is higher than our agility score for Ch. baldwini of 2 

between 2 and 3 (Cox & Jeffery, 2010). Overall, while some Chriacus specimens or taxa may 3 

have been scansorial, cursorial or arboreal, as described above (Rose, 1990, 1996), it is unlikely 4 

that Chriacus was highly agile. The signal carried by the semicircular canal radius was not 5 

similar to some extant carnivorans such as viverrids (agility score 4; Spoor et al. 2007), as 6 

suggested by Rose (1987) for his uncertain species of Chriacus, or to artiodactyls as suggested 7 

by Rose (1996) based on those agility scores. Compared to carnivorans with an agility score of 3, 8 

Ch. pelvidens was more similar to Procyon cancrivorus (crab-eating raccoon), Taxidea taxus 9 

(American badger) or the lighter raccoon dog (Nyctereutes procyonoides viverrinus), depending 10 

on the body mass used (Spoor et al. 2007). Compared to extant mammals with an agility score of 11 

2, Ch. baldwini was more similar to Phalanger orientalis (northern common cuscus) and 12 

Lophiomys imhausi (crested rat; Spoor et al. 2007). It cannot be ruled out that Ch. pelvidens or 13 

Ch. baldwini were able to climb trees based on these agility scores, because some scansorial 14 

carnivorans and marsupials have similar scores. They could have also potentially been cursorial, 15 

but to our knowledge, no modern analogue portrays this behavior with such low agility scores at 16 

a similar body mass (see Cox & Jeffery, 2010). 17 

It is worth noting that agility scores should be interpreted with caution, as explained by 18 

Macrini et al. (2010). First, these scores require a body mass calculation, and estimations of body 19 

mass for fossils can greatly vary when using different proxies, such as dental vs. postcranial 20 

equations (Damuth & MacFadden, 1990). Second, these scores were based on extant mammals 21 

that were classified into locomotor categories based on video footage of behavior (Spoor et al. 22 
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2007). However, it is unclear how representative such video footage is of the wide spectrum of 1 

locomotor abilities that species are capable of (see Macrini et al., 2010).    2 

 3 

Implications for phylogenetic characters and character states  4 

A close relationship between Chriacus and Artiodactyla has been proposed multiple 5 

times based on postcranial and dental elements from different species: Ch. baldwini (Van Valen, 6 

1971, 1978), Chriacus sp. (Rose, 1996), and Ch. truncatus (= Ch. baldwini; Rose, 1996). 7 

However, Rose (1987) argued that postcrania from another Chriacus sp. specimen—the arboreal 8 

specimen discussed above—bore little resemblance to the unequivocal early artiodactyl 9 

Diacodexis, and thus raised doubts about the long-considered link between the two. More 10 

recently, the numerical phylogenetic analysis of Ladevèze et al. (2010) found Chriacus nested 11 

within the sister-clade to Artiodactyla (including Diacodexis) based on specimens belonging to 12 

Chriacus sp. (Rose, 1987) and Ch. orthogonius (Szalay & Lucas, 1996). It is worth noting that in 13 

the consensus tree of the same study, Chriacus is placed in a polytomy with artiodactyls, 14 

perissodactyls and other archaic placentals. The phylogenetic analysis of De Bast and Smith 15 

(2013) also found Ch. pelvidens to be closely related to a group including Diacodexis. However, 16 

the resolution is also poor for this analysis and Diacodexis is part of a large polytomy. Perhaps 17 

surprisingly, however, Halliday et al. (2017) recovered Chriacus closer to carnivorans and 18 

pangolins than to artiodactyls, based on character scores from a variety of Chriacus specimens 19 

and species (Ch. pelvidens, Ch. baldwini, Ch. pusillus, Ch. calenancus, Ch. katrinae, and Ch. 20 

oconostotae) pooled together in a composite genus-level taxon. Therefore, it is currently unclear 21 

which species of Chriacus may, or may not, be closely related to which extant placental orders. 22 
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Internal endocranial anatomy may help shed light on the affinities of Chriacus, but such 1 

morphological data have yet to be considered in comparative phylogenetic studies of the taxon. 2 

Chriacus shares ancestral bony labyrinth features described in Macrini et al. (2013), with the 3 

potential stem euungulate Protungulatum sp. (Orliac & O’Leary, 2016), the early artiodactyl D. 4 

ilicis (Orliac et al. 2012b), the ‘condylarth’ H. lepidus (Ladevèze et al. 2010; Ravel & Orliac, 5 

2015), and the ‘archaic’ pantodont A. inopinata (Muizon et al. 2015). For example, the following 6 

are all present in the above taxa: presence of the second common crus between the LSC and the 7 

PSC, the low position of the LSC plane relative to the ampulla of the PSC, and the ASC being 8 

the canal with the greatest radius and being higher than the PSC. These are all likely ancestral 9 

features for Theria (Ekdale, 2013), so this is not unexpected.  10 

Our modified version of the Macrini et al. (2013) dataset allows us to explicitly compare 11 

the bony labyrinth features of Chriacus with those of other early placentals and close relatives, 12 

establish similarities with key taxa, and propose potential synapomorphies that can later be tested 13 

in a numerical phylogenetic analysis of the entire skeleton. In general, both species of Chriacus 14 

possess the inferred ancestral state of Placentalia for most characters in the dataset (see Macrini 15 

et al. [2013] for details of how ancestral states were estimated). The features representing 16 

potentially derived characteristics relative to the placental ancestral state relate to the anterior 17 

and lateral ampullae position (#9), the housing of the utricule and saccule (#15), the utricule 18 

chamber position (#16), and the fenestra cochleae diameter (#25). Most importantly, the dataset 19 

suggests that three bony labyrinth characters might support the affinity of both species of 20 

Chriacus with H. lepidus, D. ilicis and/or Protungulatum sp., all of which are commonly held to 21 

be members of, or close relatives of, Euungulata. First, character #15 corresponds to the utricle 22 

(elliptical recess) and saccule (spherical recess) housing. For this character, Chriacus pelvidens, 23 
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Ch. baldwini, D. ilicis, and Protungulatum sp. have the utricle (elliptical recess) and saccule 1 

(spherical recess) housed within distinct, but not separated, chambers in the bony labyrinth. 2 

Second, character #16 relates to the position of the utricle chamber (Fig. S5). This structure is 3 

located closer to the anterior end of the LSC in Ch. pelvidens, Ch. baldwini, D. ilicis, and 4 

Protungulatum sp. than in other taxa (Table 5).  5 

We note here some additional neurosensory features, not included in our modified 6 

version of the Macrini et al. (2013) dataset, that may be phylogenetically informative and help 7 

clarify the relationships of Ch. pelvidens. The fenestra cochleae extends posteriorly beyond the 8 

PSC in Ch. pelvidens, Protungulatum sp., D. ilicis, and H. lepidus, but not in A. inopinata. 9 

Chriacus pelvidens and Protungulatum sp. have a preserved cochlear fossula and aqueduct for 10 

the cochlear fossula; however, Ch. pelvidens, D. ilicis and H. lepidus do not display a horseshoe 11 

shaped outpocketing, in contrast to Protunguatum sp. It is worth noting that both D. ilicis and H. 12 

lepidus exhibit a much larger fenestra cochleae compared to Ch. pelvidens and Protungulatum 13 

sp. The configuration of the fenestra cochleae in Ch. pelvidens could thus represent an 14 

intermediate state between more basal and derived Euungulata.  15 

 The cranial endocast of Ch. baldwini shares ancestral features with other early placental 16 

mammals related to the relative sizes of the brain, olfactory bulb and petrosal lobule. They all 17 

have a relatively low EQ, below 0.50, which has been considered the minimum value for extant 18 

mammals (Rowe et al. 2011; Hoffmann et al. 2014; see discussion in Cameron et al. 2019). The 19 

olfactory bulbs represent more than 6% of total brain volume, which has been considered as the 20 

ancestral state for the common ancestor of therians by Macrini et al. (2007, character 1). 21 

Diacodexis ilicis and H. lepidus as well as many Eocene artiodactyls also bear the same ancestral 22 

condition for the olfactory bulbs (Orliac & Gilissen, 2012). The petrosal lobules of Ch. baldwini, 23 
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D. ilicis and H. lepidus represent less than 1% of brain volume (Ch. #15), which is the ancestral 1 

condition for therians and is also found in some Mesozoic mammals (Vincelestes and 2 

Hadrocodium; paraflocculi in Macrini, 2006).  3 

 4 

Conclusions 5 

Reconstructions of the bony labyrinth and cranial endocasts of Ch. pelvidens and Ch. 6 

baldwini shed light on the neurosensory systems and help illuminate the biology and behaviors 7 

of Paleocene ‘archaic’ placental mammals. Chriacus baldwini probably relied heavily on its 8 

sense of smell as other early placental mammals such as Ca. coarctatus (Cameron et al. 2019) 9 

and O. tisonensis (Napoli et al. 2017), but less so on vision (including a low vestibulo-occular 10 

reflex) because its petrosal lobules and neocortex were not as developed as in mammals with 11 

enhanced eyesight, such as squirrels (Bertrand et al. 2017). Chriacus pelvidens and Ch. baldwini 12 

were probably slow- to medium-moving mammals based on semicircular canal data, and 13 

Chriacus pelvidens was able to hear a range of sounds that may have been similar to that of the 14 

extant aardvark and nine-banded armadillo. The bony labyrinth provides new data supporting the 15 

potential relationship between Ch. pelvidens, Ch. baldwini and extant placental mammals. 16 

Chriacus shares derived features in the vestibular region with the early artiodactyl Diacodexis 17 

and some potential Paleogene stem Euungulata, particularly in the housing of the utricle and 18 

saccule (elliptical and spherical recesses). The bony labyrinth morphology may partly support 19 

other studies (e.g. Van Valen, 1978; Rose, 1996; Ladevèze et al. 2010; De Bast & Smith, 2013), 20 

which have hypothesized that Chriacus is closely related to Euungulata, and perhaps 21 

Artiodactyla, based on either non-numerical phylogenetic reasoning or highly homoplastic and 22 

poorly resolved phylogenetic analyses. This result also shows the potential of using bony 23 
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labyrinth morphology to improve our understanding of the phylogenetic relationships between 1 

early and modern placental mammals. 2 
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Supporting Information 4 

Additional Supporting Information may be found in the online version of this article: 5 

 6 

Table S1 Additional measurements for the bony labyrinths of Chriacus pelvidens (NMMNH P-7 

62258) and Ch. baldwini (MCZ 20676). The total number of turns was calculated by dividing the 8 

"Total calculated angle" by 360° (Ekdale, 2009). 9 

 10 

Table S2 First lower molar measurements of Chriacus pelvidens used to estimate the body mass 11 

of NMMNH P-62258. Abbreviations: BM, body mass; DW, distal width; L, length; MW, 12 

mesial width. Measurements are in millimeters. 13 

 14 

Table S3 First lower molar measurements of Chriacus baldwini used to estimate the body mass 15 

of MCZ 20676. Abbreviations: BM, body mass; DW, distal width; L, length; MW, mesial 16 

width. Measurements are in millimeters. 17 

 18 

Table S4 Agility scores for Paleocene-Eocene placental mammals. Abbreviations: ASC, 19 

anterior semicircular canal; LSC, lateral semicircular canal; PSC, posterior semicircular canal; 20 

SC, average semicircular canal. References are for the semicircular radius measurements. Data 21 

for primates and Alcidedorbignya inopinata only include specimens with measurements from all 22 

three canals. Abbreviations: FMNH, The Field Museum, Chicago, IL; SGOPV, Vertebrate 23 
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Paleontology Collections, Museo Nacional de Historia Natural, Santiago, Chile; UALVP, 1 

University of Alberta Laboratory of Vertebrate Paleontology, Edmonton, AB Canada; UM, 2 

University of Michigan Museum of Paleontology, Ann Arbor, MI. 3 

 4 

Table S5 Low- and high-frequency limits of hearing at 60 dB in kHz based on the equation from 5 

West (1985), Rosowski and Graybeal (1991), and Rosowski (1992) for a range of extant and 6 

extinct mammals. The number of turns was determined based on the cochlear coiling/360° 7 

(Ekdale, 2009). References are for cochlear coiling and cochlear length (=basilar membrane 8 

length; Ekdale & Rowe, 2011). The range of hearing in octaves was calculating by using this 9 

formula: (Log2 [high-frequency limit/low-frequency limit]). Abbreviations: MSW, Florida Fish 10 

and Wildlife Conservation Commission, Fish and Wildlife Research Institute, Marine Mammal 11 

Pathobiology Laboratory, St. Petersburg, FL; SDSNH, San Diego Society of Natural History, 12 

San Diego, CA; TMM, Texas Memorial Museum, Austin, TX; UTO-HS, University of Texas at 13 

Austin, Department of Anthropology Teaching Collection, Austin, TX. 14 

 15 

Table S6 Body masses, endocranial volumes and EQs for Chriacus baldwini (MCZ 20676) and 16 

the compared Paleocene and Eocene placental mammals.  17 

 18 

Fig. S1. Additional views of the cranium of Chriacus baldwini (MCZ 20676). (A) dorsal, (B) 19 

lateral left, (C) lateral right views. Scale bar = 10 mm. By permission of the Harvard Board of 20 

Trustees. 21 

 22 
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Fig. S2. High-resolution X-ray computed tomography slice and cranium of Chriacus baldwini. 1 

(A) slice and (B) cranium of Chriacus baldwini (MCZ 20676). The slice portrayed was taken in 2 

the coronal plane at the levels indicated with the red line on the right lateral view of the 3 

specimen. The slice number is indicated on the top right corner of the slice. Scale bar = 10 mm. 4 

Abbreviations: otc, orbitotemporal canal; rf, rhinal fissure. By permission of the Harvard Board 5 

of Trustees. 6 

 7 

Fig. S3. High-resolution X-ray computed tomography slices and bony labyrinth of Chriacus  8 

pelvidens (NMMNH P-62258). (A) ventral view of the bony labyrinth of Chriacus  9 

pelvidens (NMMNH P-62258), (B, C, and D) slices of the bony labyrinth of Chriacus  10 

pelvidens (NMMNH P-62258) in the YZ dimensions. Abbreviations: pbl, primary bony  11 

laminae; sbl, second bony laminae; sma, spiral modiolar arteries; smv, spiral modiolar veins. 12 

 13 

Fig. S4. Comparisons of the bony labyrinth of Chriacus pelvidens to other early placental 14 

mammals. (A) Chriacus pelvidens (NMMNH P-62258), (B) Diacodexis ilicis (AMNH VP 15 

16141; Orliac et al. 2012b), (C) Hyopsodus lepidus (AMNH FM 143783; Ravel et al. 2015), (D) 16 

Protungulatum sp. (AMNH VP 118359; Orliac & O’Leary, 2016), (E) litoptern indet. (UFRJ-DG 17 

119-M; Orliac & O’Leary, 2016). Not to scale. The horseshoe shaped outpocketing of the 18 

cochlear fossula (hso) is only visible in Protungulatum sp. and the litoptern indet. The image of 19 

litoptern indet. (UFRJ-DG 119-M) was modified from Orliac and O’Leary (2016). Hyopsodus 20 

lepidus (AMNH FM 143783) and litoptern indet., (UFRJ-DG 119-M) are mirrored images of the 21 

specimens. All the specimens are shown in posteromedial view. 22 

 23 
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Fig. S5. Additional views of the inner ear of Chriacus pelvidens and compared Paleocene-1 

Eocene placental mammals. (A, B) Chriacus pelvidens (NMMNH P-62258), (C, D) Diacodexis 2 

ilicis (AMNH VP 16141; Orliac et al. 2012b), (E, F) Hyopsodus lepidus (AMNH FM 143783; 3 

Ravel et al. 2015), (G, H) Protungulatum sp. (AMNH VP 118359; Orliac & O’Leary, 2016), 4 

Alcidedorbignya inopinata (MHNC 8399; Muizon et al. 2015), Carsioptychus coarctatus 5 

(AMNH 27601; Cameron et al. 2019). Scale bar =1 mm. (A-F) lateral, (G-L) dorsal views. 6 

Hyopsodus lepidus (AMNH FM 143783) is a mirrored image of the specimen. 7 

 8 

Table legends 9 

Table 1 Equations used to calculate the body masses, agility scores, and hearing range of 10 

Chriacus. Abbreviations: ASCR, anterior semicircular canal radius (mm); BM, body mass; 11 

BML, basilar membrane length; CT, number of cochlear turns; EXP, exponential; FP, footplate 12 

area based on the fenestra vestibuli dimensions; LN, natural logarithm; LOG10, logarithm with 13 

base 10; LSCR, lateral semicircular canal radius (mm); PSCR, posterior semicircular canal 14 

radius (mm); SCR, average semi-circular canal radius (mm). 15 

 16 

Table 2 Estimated body masses for Chriacus pelvidens (NMMNH P-62258) and Ch. baldwini 17 

(MCZ 20676) based on the equations from Table 1. Abbreviations: BM, body mass; L, length. 18 

Dental measurements are available in Tables S2 and S3. Values in bold are upper and lower 19 

estimates. Average body mass was calculated based on the six estimated body masses for each 20 

species. 21 

 22 



63 
 

Table 3 Inner ear and brain quantification summary for Chriacus pelvidens (NMMNH P-62258) 1 

and Ch. baldwini (MCZ 20676) compared with Paleocene and Eocene placental mammals. Data 2 

for comparative sample are from Cameron et al. (2019), Orliac and O'Leary (2016), Ravel and 3 

Orliac (2015), Muizon et al. (2015), Orliac and Gilissen (2012), and Orliac et al. (2012a). 4 

Neocortical, and endocranial heights, petrosal lobule and endocranial volumes were measured 5 

directly on the cranial endocasts published by Orliac and Gilissen (2012), Orliac et al. (2012a). 6 

For Muizon et al. (2015), neocortical and endocranial heights were measured on published 7 

figures. The petrosal lobule volume percentage ratio is for two petrosal lobules. Low- and high-8 

frequency limits of hearing at 60 dB in kHz are based on the equation from West (1985). Agility 9 

scores are based on the average semicircular canal. Body masses used for the encepalization 10 

quotients and agility scores are available in Tables S4 and S6. 11 

 12 

Table 4 Measurements of 3D reconstuctions from CT data of the endocasts of the bony labyrinth 13 

of Chriacus pelvidens (NMMNH P-62258) and Ch. baldwini (MCZ 20676). Comparisons with 14 

other early placental mammals and Cretaceous eutherians. Abbreviations: ASC, anterior 15 

semicircular canal; H, height; L, length; LSC, lateral semicircular canal; PSC, posterior 16 

semicircular canal; R, radius; W, width. *The cochlear volume/total volume for Alcidedorbignya 17 

inopinata is based on MHNC 8360 and MHNC 8359 (Muizon et al. 2015). Number of turns was 18 

determined based on the cochlear coiling/360° (Ekdale, 2009). Data for zhelestids, Kulbeckia 19 

kulbecke and Zalambdalestes lechei are averages based on several specimens from Ekdale and 20 

Rowe (2011). The data for Ukhaatherium gobiensis are from Ekdale (2013). Data for 21 

Protungulatum sp. (AMNH VP 118359), Hyopsodus lepidus (AMNH FM 143783) and 22 
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Diacodexis ilicis (AMNH VP 16141) are from Orliac and O'Leary (2016), data for 1 

Carsioptychus coarctatus (AMNH 27601) are from Cameron et al. (2019). 2 

 3 

Table 5 Taxon-inner ear character matrix (modifed from Marcini et al. 2013). States in bold 4 

have been modified from original matrix; taxa in bold are newly coded specimens. All the 5 

specimens are fossils except the opossum Caluromys. MNHN-F-BRD 23 is a notoungulate indet. 6 

from Billet and Muizon (2013) and UFRJ-DG 1035-M is a litoptern indet. from Billet et al. 7 

(2015). The 'Reconstructed Placental Ancestor' coding corresponds to the ancestral condition 8 

reconstructions from Macrini et al. (2013) but the character optimization might change with the 9 

addition of these new taxa. Abbreviation: NA, non-applicable. 10 

 11 

Table 6 Character list used to build the matrix (see Table 5). The list is modified from Macrini et 12 

al. (2013). New states are in bold. Abbreviations: ASC, anterior semicircular canal; LSC, lateral 13 

semicircular canal; PSC, posterior semicircular canal; SSC, semicircular canal (collectively). 14 

 15 

Figure legends 16 

Figure 1. The cranium of Chriacus baldwini (MCZ 20676) and inner ear of Ch. pelvidens 17 

(NMMNH P-62258). (A) ventral view of the cranium of MCZ 20676 (by permission of the 18 

Harvard Board of Trustees), and (B) ventral view of the left petrosal of NMMNH P-62258. All 19 

images are surface renderings from CT scan data. Scale bar =5 mm. Abbreviations: eacf, 20 

external aperture of cochlear fossula; fo, foramen ovale; fsa, foramen for ramus superior of 21 

stapedial artery; fv, foramen vestibuli; gf, glenoid fossa; hyf, hypoglossal foramen; M, molar; oc, 22 

occipital condyle; P, premolar; par, paraoccipital process; pr, promontorium of petrosal. 23 
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 1 

Figure 2. Virtual endocasts of the bony labyrinth inside the petrosal bones of Chriacus pelvidens 2 

(NMMNH P-62258). Specimen illustrated in (A-D) is the left ear and (E-H) is the right ear. 3 

Figures (A-B and E-F) dorsal, (C, G) anterolateral, and (D, H) ventrolateral views. Scale bar =1 4 

mm. Abbreviations: asc, anterior semicircular canal; ca, cochlear aqueduct; co, cochlear canal; 5 

cf, cochlear fossula; eacf, external aperture for the cochlear fossula; fv, fenestra vestibuli; iam, 6 

internal acoustic meatus; lsc, lateral semicircular canal; psc, posterior semicircular canal; saf, 7 

subarcuate fossa; va, vestibular aqueduct.  8 

 9 

Figure 3. Cranial and bony labyrinth virtual endocasts inside the cranium of Chriacus baldwini 10 

(MCZ 20676). (A-B) lateral right, (C) lateral left, (D) ventral, and (E) dorsal views. Scale bar 11 

=10 mm (by permission of the Harvard Board of Trustees).  12 

 13 

Figure 4. Virtual reconstruction of the cranial and bony labyrinth endocasts as well as outlined 14 

drawing of the cranial endocast of Chriacus baldwini (MCZ 20676). (A) dorsal, (B) ventral, and 15 

(C) lateral right and left views. Scale bar =5 mm. The petrosal lobule is in green, the rest of the 16 

endocast in blue and the bony labyrinth in pink. Abbreviations: bs, brainstem; cif, circular 17 

fissure; jf, internal jugular vein and cranial nerves IX, X, XI; llc, lateral lobe of cerebellum; nc, 18 

neocortex; ob, olfactory bulb; otc, orbitotemporal canal; II, optic nerve; pl, petrosal lobule; rf, 19 

rhinal fissure; sf1, ophthalmic veins and cranial nerves III, IV, V1, and VI; sss, superior sagittal 20 

sulcus; ve, vermis; V2, maxillary nerve; V3, mandibular nerve; VII, facial nerve; 21 

VIII,vestibulocochlear nerve; XII, hypoglossal nerve. 22 

 23 
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Figure 5. Comparison of the cranial endocast morphology of Chriacus baldwini (MCZ 20676) to 1 

other early placental mammals. Taxa illustrated are (A,E, I) Chriacus baldwini (MCZ 20676); 2 

(B, F, J) Diacodexis ilicis (AMNH VP 16141; Orliac & Gilissen, 2012); (C, G, K) Hyopsodus 3 

lepidus (AMNH FM 143783; Orliac et al. 2012a); (D, H, L) Alcidedorbignya inopinata (MHNC 4 

8372; Muizon et al. 2015). Scale bar =5 mm. (A-D) dorsal, (E-H) ventral, (I, K, L) lateral right 5 

and (J) lateral left mirrored views. Abbreviations: cif, circular fissure; jf, internal jugular vein 6 

and cranial nerves IX, X, XI; nc, neocortex; ob, olfactory bulb; otc, orbitotemporal canal; II, 7 

optic nerve; pl, petrosal lobule; rf, rhinal fissure; sf1, ophthalmic veins and cranial nerves III, IV, 8 

V1, and VI; sf2, ophthalmic veins and cranial nerves III, IV, V1, V2 and VI; sss, superior sagittal 9 

sulcus; ve, vermis; V2, maxillary nerve; V3, mandibular nerve; VII, facial nerve; VIII, 10 

vestibulocochlear nerve; XII, hypoglossal nerve. 11 

 12 

Figure 6. Virtual endocast of the left bony labyrinth, petrosal lobule and cranial nerves VII and 13 

VIII of Chriacus pelvidens (NMMNH P-62258). (A-B) Bony labyrinth, petrosal lobule and 14 

cranial nerves VII and VIII inside the petrosal bone. Figures (A-C) anterolateral, (D) 15 

posterolateral and (E) oblique posterior views. Scale bar =1 mm. Abbreviations: asc, anterior 16 

semicircular canal; cbl, cerebellum; cf, cochlear fossula; co, cochlear canal; fc, fenestra cochleae; 17 

fsa, foramen for ramus superior of stapedial artery; fv, fenestra vestibuli; lsc, lateral semicircular 18 

canal; pl, petrosal lobule; psc, posterior semicircular canal; VII, facial nerve; VIII, 19 

vestibulocochlear nerve. 20 

 21 

Figure 7. Virtual endocasts of the left and right bony labyrinths of Chriacus pelvidens 22 

(NMMNH P-62258). (A, G) posteromedial, (B, H) medial, (C, I) anterolateral, (D, J) dorsal, (E, 23 
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K) posterolateral, and (F, L) ventral views. Scale bar =1 mm. Abbreviations: aa, anterior 1 

ampulla; asc, anterior semicircular canal; ca, cochlear aqueduct; cc, common crus; cf, cochlear 2 

fossula; co, cochlear canal; er, elliptical recess; fc, fenestra cochleae; fv, fenestra vestibuli; la, 3 

lateral ampulla; lsc, lateral semicircular canal; pa, posterior ampulla; pbl, primary bony lamina 4 

imprint; psc, posterior semicircular canal; sbl, secondary bony lamina imprint; scc, secondary 5 

common crus; spa, spiral modiolar artery; spv, spiral modiolar vein; sr, spherical recess; va, 6 

vestibular aqueduct; vac, vena aquaeductus cochleae. Veins are in blue and arteries in red. 7 

 8 

Figure 8. Virtual endocasts of the left and right bony labyrinths of Chriacus baldwini (MCZ 9 

20676). (A, G) posteromedial, (B, H) medial, (C, I) anterolateral, (D, J) dorsal, (E, K) 10 

posterolateral, and (F, L) ventral views. Scale bar =1 mm. Abbreviations: aa, anterior ampulla; 11 

asc, anterior semicircular canal; cc, common crus; co, cochlear canal; er, elliptical recess; la, 12 

lateral ampulla; lsc, lateral semicircular canal; pa, posterior ampulla; pbl, primary bony lamina 13 

imprint; psc, posterior semicircular canal; sbl, secondary bony lamina imprint; scc, secondary 14 

common crus; sr, spherical recess; va, vestibular aqueduct. 15 

 16 

Figure 9. Comparison of the bony labyrinth morphology of Chriacus pelvidens (NMMNH P-17 

62258) to other early placental mammals. Taxa illustrated are (A-D) Chriacus pelvidens 18 

(NMMNH P-62258); (E-H) Diacodexis ilicis (AMNH VP 16141; Orliac et al. 2012b); (I-L) 19 

Hyopsodus lepidus (AMNH FM 143783; Ravel et al. 2015); (M-P) Protungulatum sp. (AMNH 20 

VP 118359; Orliac & O’Leary, 2016); (Q-T) Alcidedorbignya inopinata (MHNC 8399; Muizon 21 

et al. 2015); (U-X) Carsioptychus coarctatus (AMNH 27601; Cameron et al. 2019). Scale bar =1 22 

mm. (A-U) medial, (B-V) anterolateral, (C-W) posterolateral, (D-X) dorsal views. 23 
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Abbreviations: aa, anterior ampulla; ca, cochlear aqueduct; cc, common crus; cf, cochlear 1 

fossula; co, cochlear canal; er, elliptical recess; fc, fenestra cochleae; fv, fenestra vestibuli; la, 2 

lateral ampulla; pbl, primary bony lamina imprint; psc, posterior semicircular canal; sbl, 3 

secondary bony lamina imprint; scc, secondary common crus; sr, spherical recess; va, vestibular 4 

aqueduct. All the specimens are left inner ears except A. inopinata (MHNC 8399), which is a 5 

mirrored image of the right inner ear. 6 

 7 

Figure 10. Log 10 of the frequency limits of hearing at 60 dB (kHz) and the corresponding range 8 

of hearing in octaves of Chriacus pelvidens (NMMNH P-62258), extant and extinct mammals. 9 

Data are from Table S5. 10 

 11 

Figure 11. Agility score boxplot based on the semicircular canal averages of Chriacus pelvidens 12 

(NMMNH P-62258), Ch. baldwini (MCZ 20676) and selected Paleocene-Eocene placental 13 

mammals. Data are from Table S4. 14 


