32 research outputs found

    Investigating Diet as the Source of Tetrodotoxin in the Grey Side-gilled Sea Slug, Pleurobranchaea maculata

    Get PDF
    Pleurobranchaea maculata (grey-side gilled sea slug) was discovered to contain the neurotoxin tetrodotoxin (TTX) in 2009 after a spate of dog poisoning cases on the beaches of Auckland, New Zealand. One of the great mysteries of TTX is the lack of conclusive evidence about its ultimate origin. Possible sources postulated have included both endogenous and exogenous. Additionally, within a species both toxic and non-toxic strains exist. For example, in New Zealand, P. maculate from the North Island are toxic, whereas P. maculata from the South Island are not. The overarching hypothesis of this Master’s project is that TTX has a dietary origin in P. maculata and that they will preferentially feed on TTX-containing food. This Master’s thesis aimed to test this hypothesis through three distinct aims: (1) To develop a non-lethal biopsy method and determine the feasibility for future research concerning TTX in P. maculata; (2) To investigate whether nontoxic P. maculata can accumulate TTX from a dietary source, and how TTX is distributed through the organism; and (3) To investigate whether P. maculata are attracted to TTX and if this varies depending on the TTX content within P. maculata. A biopsy method was developed for taking approximately 200 mg tissue biopsies using a TemnoEvolution 18G × 11 cm Biopsy Needle inserted transversely into the foot. Six P. maculata were biopsied twice (nine days apart) and each individual was frozen immediately following the second sampling. Tetrodotoxin concentrations in biopsy samples, gonad, stomach, mantle and the remaining combined tissues and fluids were measured using liquid chromatography-mass spectrometry (LC-MS). Based on the proportional weight of the organs/tissues a total TTX concentration for each individual was calculated. There were strong correlations between biopsy TTX concentrations and the total (r² = 0.88), stomach (r² = 0.92) and gonad (r² =0.83) TTX concentrations. To investigate the accumulation of TTX, eighteen non-toxic P. maculate were maintained in aquariums and twelve were fed a TTX-containing diet. Three P. maculata were harvested after 1 hr, 24 hrs, 17 days and 39 days and TTX concentrations in their stomach, gonad, mantle and remaining tissue/fluids determined using LC-MS. Tetrodotoxin was detected in all organs/tissue after 1 hr with an average uptake of 32%. This decreased throughout the experiment (21%, 15% and 9%, respectively). This study demonstrated that P. maculata can accumulate TTX from a dietary source. To explore whether P. maculata were attracted to TTX, three preference experiments were undertaken; (1) an aquarium zonation experiment, (2) a toxic/non-toxic agar trail experiment and, (3) a direct choice experiment using combinations of toxic/non-toxic agar blocks. A statistically significant preference for TTX was found for toxic P. maculata in the agar trails (P < 0.001) and direct choice experiments (P < 0.001). For the non-toxic P. maculata, a statistically significant preference was only found for the direct choice experiment (P = 0.002). Collectively these studies demonstrate that diet is a possible source in P. maculata. However, given the absence of identifiable TTX sources in environments where P. maculata are prevalent, in concert with their extremely high TTX concentrations and short life spans, it is unlikely to be the sole source for this species

    Investigating diet as the source of tetrodotoxin in Pleurobranchaea maculata

    Get PDF
    The origin of tetrodotoxin (TTX) is highly debated; researchers have postulated either an endogenous or exogenous source with the host accumulating TTX symbiotically or via food chain transmission. The aim of this study was to determine whether the grey side-gilled sea slug (Pleurobranchaea maculata) could obtain TTX from a dietary source, and to attempt to identify this source through environmental surveys. Eighteen non-toxic P. maculata were maintained in aquariums and twelve were fed a TTX-containing diet. Three P. maculata were harvested after 1 h, 24 h, 17 days and 39 days and TTX concentrations in their stomach, gonad, mantle and remaining tissue/fluids determined using liquid chromatography-mass spectrometry. Tetrodotoxin was detected in all organs/tissue after 1 h with an average uptake of 32%. This decreased throughout the experiment (21%, 15% and 9%, respectively). Benthic surveys at sites with dense populations of toxic P. maculata detected very low or no TTX in other organisms. This study demonstrates that P. maculata can accumulate TTX through their diet. However, based on the absence of an identifiable TTX source in the environment, in concert with the extremely high TTX concentrations and short life spans of P. maculata, it is unlikely to be the sole TTX source for this species

    GA4GH: International policies and standards for data sharing across genomic research and healthcare.

    Get PDF
    The Global Alliance for Genomics and Health (GA4GH) aims to accelerate biomedical advances by enabling the responsible sharing of clinical and genomic data through both harmonized data aggregation and federated approaches. The decreasing cost of genomic sequencing (along with other genome-wide molecular assays) and increasing evidence of its clinical utility will soon drive the generation of sequence data from tens of millions of humans, with increasing levels of diversity. In this perspective, we present the GA4GH strategies for addressing the major challenges of this data revolution. We describe the GA4GH organization, which is fueled by the development efforts of eight Work Streams and informed by the needs of 24 Driver Projects and other key stakeholders. We present the GA4GH suite of secure, interoperable technical standards and policy frameworks and review the current status of standards, their relevance to key domains of research and clinical care, and future plans of GA4GH. Broad international participation in building, adopting, and deploying GA4GH standards and frameworks will catalyze an unprecedented effort in data sharing that will be critical to advancing genomic medicine and ensuring that all populations can access its benefits

    The trans-ancestral genomic architecture of glycemic traits

    Get PDF
    Glycemic traits are used to diagnose and monitor type 2 diabetes and cardiometabolic health. To date, most genetic studies of glycemic traits have focused on individuals of European ancestry. Here we aggregated genome-wide association studies comprising up to 281,416 individuals without diabetes (30% non-European ancestry) for whom fasting glucose, 2-h glucose after an oral glucose challenge, glycated hemoglobin and fasting insulin data were available. Trans-ancestry and single-ancestry meta-analyses identified 242 loci (99 novel; P < 5 x 10(-8)), 80% of which had no significant evidence of between-ancestry heterogeneity. Analyses restricted to individuals of European ancestry with equivalent sample size would have led to 24 fewer new loci. Compared with single-ancestry analyses, equivalent-sized trans-ancestry fine-mapping reduced the number of estimated variants in 99% credible sets by a median of 37.5%. Genomic-feature, gene-expression and gene-set analyses revealed distinct biological signatures for each trait, highlighting different underlying biological pathways. Our results increase our understanding of diabetes pathophysiology by using trans-ancestry studies for improved power and resolution. A trans-ancestry meta-analysis of GWAS of glycemic traits in up to 281,416 individuals identifies 99 novel loci, of which one quarter was found due to the multi-ancestry approach, which also improves fine-mapping of credible variant sets.Peer reviewe

    Investigating Diet as the Source of Tetrodotoxin in Pleurobranchaea maculata

    Get PDF
    The origin of tetrodotoxin (TTX) is highly debated; researchers have postulated either an endogenous or exogenous source with the host accumulating TTX symbiotically or via food chain transmission. The aim of this study was to determine whether the grey side-gilled sea slug (Pleurobranchaea maculata) could obtain TTX from a dietary source, and to attempt to identify this source through environmental surveys. Eighteen non-toxic P. maculata were maintained in aquariums and twelve were fed a TTX-containing diet. Three P. maculata were harvested after 1 h, 24 h, 17 days and 39 days and TTX concentrations in their stomach, gonad, mantle and remaining tissue/fluids determined using liquid chromatography-mass spectrometry. Tetrodotoxin was detected in all organs/tissue after 1 h with an average uptake of 32%. This decreased throughout the experiment (21%, 15% and 9%, respectively). Benthic surveys at sites with dense populations of toxic P. maculata detected very low or no TTX in other organisms. This study demonstrates that P. maculata can accumulate TTX through their diet. However, based on the absence of an identifiable TTX source in the environment, in concert with the extremely high TTX concentrations and short life spans of P. maculata, it is unlikely to be the sole TTX source for this species

    Development of a non-lethal biopsy technique for estimating total tetrodotoxin concentrations in the grey side-gilled sea slug Pleurobranchaea maculata

    No full text
    High concentrations of tetrodotoxin (TTX) have been detected in some New Zealand populations of Pleurobranchaea maculata (grey side-gilled sea slug). Within toxic populations there is significant variability in TTX concentrations among individuals, with up to 60-fold differences measured. This variability has led to challenges when conducting controlled laboratory experiments. The current method for assessing TTX concentrations within P. maculata is lethal, thus multiple individuals must be harvested at each sampling point to produce statistically meaningful data. In this study a method was developed for taking approximately 200 mg tissue biopsies using a TemnoEvolution® 18G × 11 cm Biopsy Needle inserted transversely into the foot. Correlation between the TTX concentrations in the biopsy sample and total TTX levels and in individual tissues were assessed. Six P. maculata were biopsied twice (nine days apart) and each individual was frozen immediately following the second sampling. Tetrodotoxin concentrations in biopsy samples and in the gonad, stomach, mantle and the remaining combined tissues and fluids were measured using liquid chromatography-mass spectrometry. Based on the proportional weight of the organs/tissues a total TTX concentration for each individual was calculated. There were strong correlations between biopsy TTX concentrations and the total (r2 = 0.88), stomach (r2 = 0.92) and gonad (r2 = 0.83) TTX concentrations. This technique will enable more robust laboratory studies to be undertaken, thereby assisting in understanding TTX kinetics, ecological function and origin within P. maculata

    Genome-wide association analyses identify three new susceptibility loci for primary angle closure glaucoma

    No full text
    10.1038/ng.2390Nature Genetics44101142-1146NGEN

    Genome-wide association analyses identify three new susceptibility loci for primary angle closure glaucoma.

    No full text
    Primary angle closure glaucoma (PACG) is a major cause of blindness worldwide. We conducted a genome-wide association study including 1,854 PACG cases and 9,608 controls across 5 sample collections in Asia. Replication experiments were conducted in 1,917 PACG cases and 8,943 controls collected from a further 6 sample collections. We report significant associations at three new loci: rs11024102 in PLEKHA7 (per-allele odds ratio (OR)=1.22; P=5.33×10(-12)), rs3753841 in COL11A1 (per-allele OR=1.20; P=9.22×10(-10)) and rs1015213 located between PCMTD1 and ST18 on chromosome 8q (per-allele OR=1.50; P=3.29×10(-9)). Our findings, accumulated across these independent worldwide collections, suggest possible mechanisms explaining the pathogenesis of PACG
    corecore