851 research outputs found

    Axial Flow Turbine for Solar Chimney

    Get PDF

    Modeling the Effect of Wheel Traveling on the Soil Surface on the Load of Buried Structure

    Get PDF

    Studying The Collector Performance Of Updraft Solar Chimney Power Plant

    Get PDF
    In the shadow of increasing energy consumption, renewable energy is the best choicefor a sustainable environment. The solar chimney power plant (SCPP) is a new technology, many researchers are paying their attention to improve its performance. In this study, experimental and numerical studies were used to understand the effect of the collector geometry on the SCPP performance. The SCPP prototype under our investigation is installed in Aswan city, its chimney height is 20m, its diameter is 1 m and the collector is a square which has a side length of 28.5m. Three dimensional CFD simulations were made to calculate the temperature and velocity distribution inside two different shapes of SCPP collector. The conclusion is that the square shaped collector achieved higher output power than the circular collector by 7.6 % at the same surface area exposed to solar radiation

    Forecasting the European carbon market

    Get PDF
    In an effort to meet its obligations under the Kyoto Protocol, in 2005 the European Union introduced a cap-and-trade scheme where mandated installations are allocated permits to emit CO2. Financial markets have developed that allow companies to trade these carbon permits. For the EU to achieve reductions in CO2 emissions at a minimum cost, it is necessary that companies make appropriate investments and policymakers design optimal policies. In an effort to clarify the workings of the carbon market, several recent papers have attempted to statistically model it. However, the European carbon market (EU ETS) has many institutional features that potentially impact on daily carbon prices (and associated …nancial futures). As a consequence, the carbon market has properties that are quite di¤erent from conventional financial assets traded in mature markets. In this paper, we use dynamic model averaging (DMA) in order to forecast in this newly-developing market. DMA is a recently-developed statistical method which has three advantages over conventional approaches. First, it allows the coefficients on the predictors in a forecasting model to change over time. Second, it allows for the entire forecasting model to change over time. Third, it surmounts statistical problems which arise from the large number of potential predictors that can explain carbon prices. Our empirical results indicate that there are both important policy and statistical benefits with our approach. Statistically, we present strong evidence that there is substantial turbulence and change in the EU ETS market, and that DMA can model these features and forecast accurately compared to conventional approaches. From a policy perspective, we discuss the relative and changing role of different price drivers in the EU ETS. Finally, we document the forecast performance of DMA and discuss how this relates to the efficiency and maturity of this market

    Atmospheric constraints on global emissions of methane from plants

    Get PDF
    We investigate whether a recently proposed large source of CH4 from vegetation can be reconciled with atmospheric measurements. Atmospheric transport model simulations with and without vegetation emissions are compared with background CH4, delta C-13-CH4 and satellite measurements. For present - day CH4 we derive an upper limit to the newly discovered source of 125 Tg CH4 yr(-1). Analysis of preindustrial CH4, however, points to 85 Tg CH4 yr(-1) as a more plausible limit. Model calculations with and without vegetation emissions show strikingly similar results at background surface monitoring sites, indicating that these measurements are rather insensitive to CH4 from plants. Simulations with 125 Tg CH4 yr(-1) vegetation emissions can explain up to 50% of the previously reported unexpectedly high CH4 column abundances over tropical forests observed by SCIAMACHY. Our results confirm the potential importance of vegetation emissions, and call for further research

    Self-consistent modelling of the dust component in protoplanetary and circumplanetary disks: the case of PDS 70

    Get PDF
    Direct observations of young stellar objects are important to test established theories of planet formation. PDS 70 is one of the few cases where robust evidence favours the presence of two planetary mass companions inside the gap of the transition disk. Those planets are believed to be going through the last stages of accretion from the protoplanetary disk, a process likely mediated by a circumplanetary disk (CPD). We aim to develop a three dimensional radiative transfer model for the dust component of the PDS 70 system which reproduces the system's global features observed at two different wavelengths: 855 μm\mu\, \mathrm{m} with ALMA and 1.25 μm\mu\, \mathrm{m} with VLT/SPHERE. We use this model to investigate the physical properties of the planetary companion PDS 70 c and its potential circumplanetary disk. We select initial values for the physical properties of the planet and CPD through appropriate assumptions about the nature and evolutionary stage of the object. We modify iteratively the properties of the protoplanetary disk until the predictions retrieved from the model are consistent with both data sets. We provide a model that jointly explains the global features of the PDS 70 system seen in submillimeter and polarised-scattered light. Our model suggests that spatial segregation of dust grains is present in the protoplanetary disk. The submillimeter modelling of the PDS 70 c source favours the presence of an optically thick CPD and places an upper limit to its dust mass of 0.7 MM_\oplus. Furthermore, analysis of the thermal structure of the CPD demonstrates that the planet luminosity is the dominant heating mechanism of dust grains inside 0.6 au from the planet while heating by stellar photons dominates at larger planetocentric distances.Comment: accepted for publication in A&

    Controlled assembly of SNAP-PNA-fluorophore systems on DNA templates to produce fluorescence resonance energy transfer

    Get PDF
    The SNAP protein is a widely used self-labeling tag that can be used for tracking protein localization and trafficking in living systems. A model system providing controlled alignment of SNAP-tag units can provide a new way to study clustering of fusion proteins. In this work, fluorescent SNAP-PNA conjugates were controllably assembled on DNA frameworks forming dimers, trimers, and tetramers. Modification of peptide nucleic acid (PNA) with the O6-benzyl guanine (BG) group allowed the generation of site-selective covalent links between PNA and the SNAP protein. The modified BG-PNAs were labeled with fluorescent Atto dyes and subsequently chemo-selectively conjugated to SNAP protein. Efficient assembly into dimer and oligomer forms was verified via size exclusion chromatography (SEC), electrophoresis (SDS-PAGE), and fluorescence spectroscopy. DNA directed assembly of homo- and hetero-dimers of SNAP-PNA constructs induced homo- and hetero-FRET, respectively. Longer DNA scaffolds controllably aligned similar fluorescent SNAP-PNA constructs into higher oligomers exhibiting homo-FRET. The combined SEC and homo-FRET studies indicated the 1:1 and saturated assemblies of SNAP-PNA-fluorophore:DNA formed preferentially in this system. This suggested a kinetic/stoichiometric model of assembly rather than binomially distributed products. These BG-PNA-fluorophore building blocks allow facile introduction of fluorophores and/or assembly directing moieties onto any protein containing SNAP. Template directed assembly of PNA modified SNAP proteins may be used to investigate clustering behavior both with and without fluorescent labels which may find use in the study of assembly processes in cells

    Description of fourth instar larva and pupa of Atrichopogon delpontei Cavalieri and Chiossone (Diptera: Ceratopogonidae) from Brazilian Amazonia

    Get PDF
    The fourth instar larva and pupa of Atrichopogon delpontei Cavalieri and Chiossone are described for the first time. The immatures were collected from stream margins in the northern Brazilian states Rondônia and Piauí, and subsequently reared to adults. Larvae and pupae are illustrated and photomicrographed. Details on the rearing process and feeding behavior in laboratory, bionomics and notes on habitats are also provided
    corecore