1,786 research outputs found

    Heat Capacity in Magnetic and Electric Fields Near the Ferroelectric Transition in Tri-Glycine Sulfate

    Full text link
    Specific-heat measurements are reported near the Curie temperature (TCT_C~= 320 K) on tri-glycine sulfate. Measurements were made on crystals whose surfaces were either non-grounded or short-circuited, and were carried out in magnetic fields up to 9 T and electric fields up to 220 V/cm. In non-grounded crystals we find that the shape of the specific-heat anomaly near TCT_C is thermally broadened. However, the anomaly changes to the characteristic sharp λ\lambda-shape expected for a continuous transition with the application of either a magnetic field or an electric field. In crystals whose surfaces were short-circuited with gold, the characteristic λ\lambda-shape appeared in the absence of an external field. This effect enabled a determination of the critical exponents above and below TCT_C, and may be understood on the basis that the surface charge originating from the pyroelectric coefficient, dP/dTdP/dT, behaves as if shorted by external magnetic or electric fields.Comment: 4 Pages, 4 Figures. To Appear in Applied Physics Letters_ January 200

    Capacity, Fidelity, and Noise Tolerance of Associative Spatial-Temporal Memories Based on Memristive Neuromorphic Network

    Full text link
    We have calculated the key characteristics of associative (content-addressable) spatial-temporal memories based on neuromorphic networks with restricted connectivity - "CrossNets". Such networks may be naturally implemented in nanoelectronic hardware using hybrid CMOS/memristor circuits, which may feature extremely high energy efficiency, approaching that of biological cortical circuits, at much higher operation speed. Our numerical simulations, in some cases confirmed by analytical calculations, have shown that the characteristics depend substantially on the method of information recording into the memory. Of the four methods we have explored, two look especially promising - one based on the quadratic programming, and the other one being a specific discrete version of the gradient descent. The latter method provides a slightly lower memory capacity (at the same fidelity) then the former one, but it allows local recording, which may be more readily implemented in nanoelectronic hardware. Most importantly, at the synchronous retrieval, both methods provide a capacity higher than that of the well-known Ternary Content-Addressable Memories with the same number of nonvolatile memory cells (e.g., memristors), though the input noise immunity of the CrossNet memories is somewhat lower

    Non-Gaussianity in three fluid curvaton model

    Full text link
    The generation of non-gaussianity is studied in a three fluid curvaton model. By utilizing second order perturbation theory we derive general formulae for the large scale temperature fluctuation and non-gaussianity parameter, fNLf_{NL}, that includes the possibility of a non-adiabatic final state. In the adiabatic limit we recover previously known results. The results are applied to a three fluid curvaton model where the curvaton decays into radiation and matter. We find that the amount of non-gaussianity decreases as the final state of the system becomes more adiabatic and that the generated non-gaussianity in the scenario is small, ∣fNL∣∼O(1)|f_{NL}| \sim \mathcal{O}(1).Comment: 10 pages, 2 figure

    Gunn diodes and devices (bibliography for 1978-1980)

    Get PDF
    A listing of about 500 works from Soviet and foreign scientific literature on Gunn diodes and devices based on them is presented. The bibliography includes publications in which various questions pertinent to all (or several) types of semiconductor instruments in the superhigh frequency range are mentioned. A subject index is included
    • …
    corecore