1,647 research outputs found
Why is the tropical cyclone boundary layer not "well-mixed"?
Plausible diagnostics for the top of the tropical cyclone boundary layer include (i) the top of the layer of strong frictional inflow and (ii) the top of the “well-mixed” layer; that is, the layer over which potential temperature θ is approximately constant. Observations show that these two candidate definitions give markedly different results in practice, with the inflow layer being roughly twice the depth of the layer of nearly constant θ. Here, we will present an analysis of the thermodynamics of the tropical cyclone boundary layer derived from an axisymmetric model. We show that the marked dry static stability in the upper part of the inflow layer is due largely to diabatic effects. The radial wind varies strongly with height, and therefore so does radial advection of θ. This process also stabilizes the boundary layer, but to a lesser degree than diabatic effects. We also show that this differential vertical advection contributes to the observed superadiabatic layer adjacent to the ocean surface, where the vertical gradient of the radial wind is reversed, but that the main cause of this unstable layer is heating from turbulent dissipation. The top of the “well-mixed” layer is thus distinct from the top of the boundary layer in tropical cyclones. The top of the inflow layer is a better proxy for the top of the boundary layer, but is not without limitations. These results may have implications for boundary-layer parameterisations that diagnose the boundary layer depth from thermodynamic, or partly thermodynamic, criteria
Prediction and diagnosis of Tropical Cyclone formation in an NWP system. Part II
J. Atmos. Sci., 63 3091-3113The article of record as published may be located at http://dx.doi.org/10.1175/JAS3765.
Oxygen Chemisorption/Desorption in a Reversible Single-Crystal-To-Single-Crystal Transformation
A compound that can reversibly chemisorb O2 in the solid phase undergoes several consecutive single-crystal-to-single-crystal transformations involving the cleavage of four bonds and the creation of four new bonds, in one single molecule.</p
A mollified Ensemble Kalman filter
It is well recognized that discontinuous analysis increments of sequential
data assimilation systems, such as ensemble Kalman filters, might lead to
spurious high frequency adjustment processes in the model dynamics. Various
methods have been devised to continuously spread out the analysis increments
over a fixed time interval centered about analysis time. Among these techniques
are nudging and incremental analysis updates (IAU). Here we propose another
alternative, which may be viewed as a hybrid of nudging and IAU and which
arises naturally from a recently proposed continuous formulation of the
ensemble Kalman analysis step. A new slow-fast extension of the popular
Lorenz-96 model is introduced to demonstrate the properties of the proposed
mollified ensemble Kalman filter.Comment: 16 pages, 6 figures. Minor revisions, added algorithmic summary and
extended appendi
Recommended from our members
Ensemble prediction for nowcasting with a convection-permitting model - II: forecast error statistics
A 24-member ensemble of 1-h high-resolution forecasts over the Southern United Kingdom is used to study short-range forecast error statistics. The initial conditions are found from perturbations from an ensemble transform Kalman filter. Forecasts from this system are assumed to lie within the bounds of forecast error of an operational forecast system. Although noisy, this system is capable of producing physically reasonable statistics which are analysed and compared to statistics implied from a variational assimilation system. The variances for temperature errors for instance show structures that reflect convective activity. Some variables, notably potential temperature and specific humidity perturbations, have autocorrelation functions that deviate from 3-D isotropy at the convective-scale (horizontal scales less than 10 km). Other variables, notably the velocity potential for horizontal divergence perturbations, maintain 3-D isotropy at all scales. Geostrophic and hydrostatic balances are studied by examining correlations between terms in the divergence and vertical momentum equations respectively. Both balances are found to decay as the horizontal scale decreases. It is estimated that geostrophic balance becomes less important at scales smaller than 75 km, and hydrostatic balance becomes less important at scales smaller than 35 km, although more work is required to validate these findings. The implications of these results for high-resolution data assimilation are discussed
Recommended from our members
Correlations of control variables in variational data assimilation
Variational data assimilation systems for numerical weather prediction rely on a transformation of model variables to a set of control variables that are assumed to be uncorrelated. Most implementations of this transformation are based on the assumption that the balanced part of the flow can be represented by the vorticity. However, this assumption is likely to break down in dynamical regimes
characterized by low Burger number. It has recently been proposed that a variable transformation based on potential vorticity should lead to control variables that are
uncorrelated over a wider range of regimes. In this paper we test the assumption that a transform based on vorticity and one based on potential vorticity produce an uncorrelated set of control variables. Using a shallow-water model we calculate the correlations between the transformed variables in the different methods. We
show that the control variables resulting from a vorticity-based transformation may retain large correlations in some dynamical regimes, whereas a potential vorticity based transformation successfully produces a set of uncorrelated control variables. Calculations of spatial correlations show that the benefit of the potential vorticity transformation is linked to its ability to capture more accurately the balanced component of the flow
Synthesis and analysis of the anticancer activity of platinum(ii) complexes incorporating dipyridoquinoxaline variants
Eight platinum(ii) complexes with anticancer potential have been synthesised and characterised. These complexes are of the type [Pt(I)(A)], where I is either dipyrido[3,2-f:2′,3′-h]quinoxaline (dpq) or 2,3-dimethyl-dpq (23Medpq) and A is one of the R,R or S,S isomers of either 1,2-diaminocyclohexane (SS-dach or RR-dach) or 1,2-diaminocyclopentane (SS-dacp or RR-dacp). The CT-DNA binding of these complexes and a series of other complexes were assessed using fluorescent intercalator displacement assays, resulting in unexpected trends in DNA binding affinity. The cytotoxicity of the eight synthesised compounds was determined in the L1210 cell line; the most cytotoxic of these were [Pt(dpq)(SS-dach)]Cl and [Pt(dpq)(RR-dach)]Cl, with IC values of 0.19 and 0.80 μM, respectively. The X-ray crystal structure of the complex [Pt(dpq)(SS-dach)](ClO)·1.75HO is also reported. This journal i
Recommended from our members
Treating sample covariances for use in strongly coupled atmosphere-ocean data assimilation
Strongly coupled data assimilation requires cross-domain forecast error covariances; information from ensembles can be used, but limited sampling means that ensemble derived error covariances are routinely rank deficient and/or ill-conditioned and marred by noise. Thus they require modification before they can be incorporated into a standard assimilation framework. Here, we compare methods for improving the rank and conditioning of multivariate sample error covariance matrices for coupled atmosphere-ocean data assimilation. The first method, reconditioning, alters the matrix eigenvalues directly; this preserves the correlation structures but does not remove sampling noise. We show it is better to recondition the correlation matrix rather than the covariance matrix as this prevents small but dynamically important modes from being lost. The second method, model state-space localisation via the Schur product, effectively removes sample noise but can dampen small cross-correlation signals. A combination that exploits the merits of each is found to offer an effective alternative
Complete and incomplete spin transitions in 1D chain iron(II) compounds.
The synthesis and characterisation of two new octahedral iron(II) SCO coordination polymers [FeL1(bimm)] (1) and [FeL2(bppa)](MeOH)0.5 (2) (L1 = [3,30]-[1,2- phenylenebis-(iminomethylidyne)bis(4-phenyl-,4-butanedionato)(2-)-N,N0,O2,O20], L2 = [E,E]-[{diethyl 2,20-1,2- phenylenebis(iminomethylidyne)bis(3-oxo-3-phenylpropanato)}(2-)-N,N0,O3,O30], bimm = bis(1H-imidazol-1-yl)methane and bppa = 1,3-bis(pyridine-4-yl)propane) is presented.
Results from X-ray structure analysis at different temperatures revealed in the case of 1 that the transition from a gradual to a cooperative SCO with a 5 K wide hysteresis is due to an increase of the short intermolecular contacts, which exceed a certain threshold for the cooperative effect. In the case of compound 2 an incomplete spin transition with a 4 K wide hysteresis was observed. The low temperature wMT product remains constant at a value typical for a mixed HS/LS state in stepwise spin transitions. A quantitative correlation between the cooperative effects of 12 monomer and polymer iron(II) SCO complexes and their structural properties derived from X-ray structure analysis, the so-called crystal contact index, CCI, is introduced
- …
