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A B S T R A C T
A 24-member ensemble of 1-h high-resolution forecasts over the Southern United Kingdom is used to study short-
range forecast error statistics. The initial conditions are found from perturbations from an ensemble transform Kalman
filter. Forecasts from this system are assumed to lie within the bounds of forecast error of an operational forecast
system. Although noisy, this system is capable of producing physically reasonable statistics which are analysed and
compared to statistics implied from a variational assimilation system. The variances for temperature errors for instance
show structures that reflect convective activity. Some variables, notably potential temperature and specific humidity
perturbations, have autocorrelation functions that deviate from 3-D isotropy at the convective-scale (horizontal scales
less than 10 km). Other variables, notably the velocity potential for horizontal divergence perturbations, maintain 3-D
isotropy at all scales. Geostrophic and hydrostatic balances are studied by examining correlations between terms in the
divergence and vertical momentum equations respectively. Both balances are found to decay as the horizontal scale
decreases. It is estimated that geostrophic balance becomes less important at scales smaller than 75 km, and hydrostatic
balance becomes less important at scales smaller than 35 km, although more work is required to validate these findings.
The implications of these results for high-resolution data assimilation are discussed.

1. Introduction

The latest breed of models which are now becoming available for
routine weather forecasting have a grid length of a kilometre or
so (Lean et al., 2008). Such models are expected to yield skill in
predicting fine scale weather events, such as convective storms,
at lead times of up to a few hours when used with appropriate data
assimilation techniques (Dixon et al., 2009). The forecasting
problems to overcome at such resolutions (termed ‘convective-
scale’ or ‘storm-scale’) are different to those which have been
dealt with in lower resolution systems (e.g. at ‘synoptic-scales’).
In some respects the convective-scale modelling problem be-
comes simpler as the grid length decreases, due to the dimin-
ishing need to parametrize convection (e.g. Lean et al., 2008).
The problem of accurately and appropriately determining the
initial conditions of such models is, however, arguably becom-
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ing more difficult owing to the lack of useful knowledge about
the characteristics of forecast uncertainty at convective scales.

Knowledge of forecast uncertainty is represented by a forecast
error covariance matrix, Pf , and is a vital ingredient for data as-
similation as it describes how an a priori state, xb (an estimate of
the initial conditions before observations are considered, which
comes from a previous forecast) is allowed to be updated by
observations (e.g. Bannister, 2008a). Pf cannot be stored explic-
itly in large data assimilation problems but there are a number of
ways in which Pf can be approximated for data assimilation. One
way is to use the information present in an ensemble of forecasts
to imply the Pf matrix, as done in the ensemble Kalman filter
(e.g. Lorenc, 2003b). This method is found to rely too heavily on
the ensemble alone, which in practice will have very many fewer
members than the number of data points to determine. This leads
to problems of undersampling such as filter divergence and spu-
rious covariances (e.g. Ehrendorfer, 2007). Another way is to
build a model of Pf that reproduces features that Pf is thought to
have. This is the approach used in 3-D and 4-D variational data
assimilation systems (e.g. Lorenc, 2003a) where the matrix used
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to model Pf is conventionally called the B-matrix. In variational
data assimilation (VAR) systems that operate at synoptic- and
global-scales, it is usual that the model of the B-matrix implies
forecast error covariances that obey near geostrophic and exact
hydrostatic balances, are homogeneous and isotropic in space,
and are stationary in time (e.g. Bannister, 2008b). Although not
ideal, these simplifications give rise to data assimilation systems
that do a reasonable job at producing analysis increments at the
scales they were designed for.

This paper is concerned with forecast error covariances de-
rived from a high-resolution limited area model (LAM), which is
a version of the Met Office Unified Model centred on a domain
over Southern United Kingdom with a grid length of 1.5 km.
Due to the high resolution it is expected that the forecast error
covariances have elements that violate the larger scale proper-
ties mentioned above. For instance, it is known that geostrophic
and hydrostatic balances diminish in convective-scale flows (al-
though it is not known precisely at what scale this process starts
to become important), and that the forecast error covariances
are likely to become more flow dependent (e.g. Zhang, 2005).
For a variational data assimilation method to be applicable in
convective-scale problems, new ways of formulating B which
are appropriate to the finer scales are being sought.

Before this process can begin various questions arise, as
little is known about the properties of forecast uncertainty at
convective-scales. Here, this problem is studied by examining a
selection of forecast error statistics derived from a 24-member
ensemble of high-resolution forecasts generated from a version
of the ‘Met Office Global and Regional Ensemble Prediction
System’ (MOGREPS, Bowler et al., 2008) adapted for use with
the 1.5 km model (Migliorini et al., 2011). Studying an ensem-
ble at a fixed time, rather than over an extended period (the
latter as in Fisher, 2003; Buehner, 2005; Berre et al., 2006) or
with the NMC method (Parrish and Derber, 1992) allows us to
examine a snapshot of forecast error statistics. It is possible to
look at only a small selection of covariance diagnostics, but it is
hoped that those shown in this paper will help later to focus the
development of a suitable model of B that is applicable to the
convective-scale VAR problem. The following issues are raised
in this paper:

(i) Can useful information be extracted from an ensemble
with a relatively small number of members?

(ii) How does forecast uncertainty change with the flow?
(iii) What is the typical spatial structure of forecast error

covariances?
(iv) To what degree does hydrostatic and geostrophic balance

hold at these scales?

These are difficult issues to address. Apart from dealing with
forecast data from a non-linear model with a large state space,
the tool that is being used to help answer these questions (i.e.
statistics from a relatively small ensemble) itself introduces noise
(e.g. Houtekamer and Mitchell, 2001). For these reasons, this

work comprises a mix of qualitative and quantitative results to
help address these points.

This paper has the following structure: In Section 2 the
model’s domain is shown, the MOGREPS system is introduced
and the meteorological case chosen for study is introduced. In
Sections 3–6 a selection of ensemble-derived statistics is shown
for the high-resolution model (and sometimes a coarser model
for comparison): variances (Section 3), point structure functions
(Section 4), correlations in vertical cross-sections (Section 5)
and balance-related diagnostics (Section 6). In Section 7 the
work is reviewed and concluded.

2. The SUK-1.5 model, the source of the
ensemble perturbations and the case study
considered

The model used primarily in this study covers a 540 ×
432 km domain over Southern United Kingdom (Lean et al.,
2008), which is here designated SUK-1.5. It has a horizontal
grid length of 1.5 km and 70 vertical eta levels with a top at
40 km and a vertical spacing ranging from a few tens of me-
tres in the boundary layer to a few kilometres near the top. It
is nested inside the 7340 × 4400 km domain of the North At-
lantic and European model (here designated NAE), itself having
a horizontal grid length of 24 km for ensemble forecasts, which
provides the lateral boundary conditions for SUK-1.5. The do-
main of the NAE model is shown in fig. 1 of Bowler et al. (2008).
The NAE itself is nested inside a global model, which has 90
km horizontal grid length at mid-latitudes. The Met Office also
runs other LAMs operationally of intermediate grid length (e.g.
4 km), which are not considered in this study. All of these models
have the same formulation of the dynamical core (Davies et al.,
2005), but SUK-1.5 does not rely on parametrized convection
as it is supposed to be of high enough resolution to permit con-
vective effects without one, although it is probably not of high
enough resolution to resolve convective processes fully.

The ensemble prediction system MOGREPS, Bowler et al.
(2008), is an application of the ensemble transform Kalman
filter, Bishop et al. (2001), which generates a set of perturbations,
which are then added to a control analysis. This procedure results
in an ensemble of states centred around the analysis which is
designed to have the correct analysis error covariance among its
members for the given observation network. The ensemble of
short (1-h) forecasts from each member (including the control)
is then expected to hold useful information about forecast error
covariances, which are studied in this work.

The forecast error covariance statistics derived from the fore-
cast ensemble are accurate, strictly speaking, only in the limit
of an ensemble with an infinite number of members. A small
(23-member plus control) ensemble will lead to sampling error,
which we do not attempt to quantify in this paper. Although
we expect many diagnostics of the statistics to be useful, sam-
pling error is a limitation of this work, but is unavoidable for a
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number of reasons. First, increasing the number of members can-
not be done at present without a complete redesign of the system
and then running the increased number of members through a
hierarchy of progressively smaller scale models. Second, doing
temporal averaging of statistics will improve their accuracy, but
doing this will remove important flow-dependent information
of interest. Third, doing localization of error covariances would
eliminate some of the sampling error, but doing this is thought to
lead to spurious balance diagnostics (Kepert, 2009), which may
actually invalidate parts of the work here, especially in Section 6.
We attempt to justify the use of a small ensemble at appropriate
places in this paper.

The MOGREPS system has been recently adapted for use with
SUK-1.5 (Migliorini et al., 2011) where the control analysis at
1.5 km resolution is determined with a preliminary 3-D VAR
system, and with latent heat and cloud nudging schemes. This
VAR system uses a B-matrix whose formulation is suited to
synoptic-scale rather than convective-scale dynamics as the Met
Office does not yet have a truly convective-scale VAR system. It
is hoped that the results of this work will help the development of
a B-matrix that is appropriate for convective-scale dynamics. We
assume for this paper that this preliminary system is still useful
to study convective-scale forecast errors as characteristics of
convective-scale forecast errors are expected to emerge as the
ensemble of SUK-1.5 forecasts progresses.

Under consideration in the bulk of this work is a 24-member
ensemble of 1-h SUK-1.5 forecasts, each valid at 1800 UTC
26 July 2007. This is the same ensemble as used in experiment
C2E01 of Migliorini et al. (2011). We are interested in the prop-
erties of 1-h forecasts because our eventual aim is to build a
variational assimilation system with a 1-h assimilation cycle at
1.5 km grid length, and such a system will need an effective
formulation of 1-h forecast error covariance statistics. Inspec-
tion of external gravity waves (through domain averaged surface
pressure tendencies) in 1.5 km ensemble forecasts revealed that
initial imbalances have dispersed by 1 h (J.-F. Caron, personal

communication 2010), meaning that spin-up effects are unlikely
to affect our results. To minimize spin-up effects further, we
have allowed 10 1-h cycles of this new system to pass before
settling on the choice of 1800 UTC.

Figure 1 shows precipitation forecasts for the control member
(the unmodified 3-D analysis, panel a) and member 6 (panel b).
Both maps show heavy precipitation over North West Wales,
which is present in all members. This precipitation is likely to
be forced by orography. Member 6 also shows a line of precipi-
tation running from South West England to the Midlands. This
precipitation is present in about half of the ensemble members
and, in contrast to the North West Wales region, is assumed to
be unrelated to orographically forced convection. The forecast
error covariances at points within these two regions are studied
in this paper. The large region of precipitation at the far south
of the domain in panel b is not studied as it is too close to the
boundary.

Figure 2 shows the divergence of the horizontal wind field for
the control (panel a) and member 6 (panel b) at level 10 (the ap-
proximate height and pressure of this and other levels referenced
in this paper are shown in Table 1). The correspondence between
the convergence features in this field (blue shading) and the pre-
cipitation in Fig. 1 is evident, especially the convergence line
in South England in member 6, although there are many other
regions showing convergence which have not met the conditions
required for precipitation to occur (e.g. over South Wales). These
fields demonstrate that the model can represent some small-scale
convection processes explicitly. The crosshairs in these panels
each mark a point of interest in these fields. Panels c and d
show the latitude/level divergence field along the lines of con-
stant longitude in panels a and b, respectively, showing the large
(tall/thin) aspect ratio of the convergence features. The top of the
convergence/divergence in panel c is deeper in the north com-
pared to the south, where it reaches level 50 (Table 1). The top of
the convergence/divergence in South England (panel d) reaches
around level 30 over the crosshair. These features remain below

Fig. 1. Precipitation rates in two 1-h forecasts of SUK-1.5, each valid at 1800 UTC 26 July 2007. Panel a is the control forecast and panel b is one of
the perturbed forecasts (member 6). Shading is to illustrate the regions of precipitation, rather than a quantitative guide. The Northwest Wales region
has rates of up to 32 mm h−1 and the Central England region has rates of up to 8 mm h−1.
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Fig. 2. Horizontal divergence fields for the control member (panels a and c) and member 6 (panels b and d) for the same situation presented in Fig. 1
at 1800 UTC. Panels a and b are for model level 10 and panels c and d are for longitudes 3.25◦ West and 1.5◦ West, respectively. Red (blue) colours
indicate diverging (converging) air.

Table 1. Approximate height (above sea level) and pressure of a
selection of levels in the SUK-1.5 and NAE models

Model level Approx. height (km) Approx. pressure (hPa)

L10 (SUK-1.5) 0.5 960
L20 (SUK-1.5) 1.4 850
L30 (SUK-1.5) 3.1 680
L34 (SUK-1.5) 4.0 605
L45 (SUK-1.5) 6.9 400
L50 (SUK-1.5) 8.5 310
L60 (SUK-1.5) 14.8 110

L13 (NAE) 3.3 690

the tropopause, which is positioned at about level 60. Patterns of
vorticity (not shown) have a close correspondence with those of
divergence at small scales indicating a break down in mass/wind
balance expected by a scale analysis of the equations of motion
(see Section 6). The specific humidity fields (not shown) are, as
expected, found to be higher locally above regions of convec-
tion compared to the immediate surroundings at the same model
level (e.g. at level 30, values are 0.004 mg kg−1 compared to
0.002 mg kg−1).

The latitude slices used in Fig. 2 are used throughout this
paper to illustrate some of the error statistics of this run of the
SUK-1.5 model.

3. Variance of forecast errors in SUK-1.5

The forecast error variance field for a given quantity and posi-
tion is the mean square error of the forecast, �2, where � is the
standard deviation field. Knowledge of the error variances is im-
portant for data assimilation as �2 specifies how well the a priori
forecast is known at different locations. Formally �2 modulates
the analysis increments such that increments for quantities and
regions with a high variance are generally larger than those with
a small variance. Hence a mis-specification of the variances in a
data assimilation system by, for example, underestimating their
values, will result in the system unable to correct the a priori
data adequately since it has put anomalously high trust in the a
priori. In this section we show a selection of ensemble-derived
variances, which we consider to be an estimate of the lower
bound of the actual forecast uncertainty (a lower bound because
we have not considered model error).

Figure 3 shows a selection of latitude/level cross-sections
of variances of various quantities. Most VAR systems attempt
to decompose the fields into components representing different
physical mechanisms operating in the atmosphere (e.g. rotational
modes and divergent modes) before computing their variances,
for example, Parrish and Derber (1992). Panels a and b of Fig. 3
are for streamfunction (ψ) and velocity potential (χ ), respec-
tively, which are control parameters in basic versions of the Met
Office VAR system. They are shown along the same latitude
cross-section shown in Fig. 2(c), so the latitudinal slope of the
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Fig. 3. Variances of streamfunction (ψ ′ in m4 s−2), velocity potential (χ ′ in m4 s−2), temperature (T ′ in K2) and specific humidity (q′ in kg2 kg−2)
found from an ensemble of SUK-1.5 forecasts valid at the same time and longitude as shown in Fig. 2(c).

divergence feature in that figure, for example, can be compared
to features in the variance fields. The comparison is made to
give a glimpse of the flow dependence of the ensemble-derived
variances.

The streamfunction error, ψ ′, describes the rotational wind
error (ζ ′

z = ∇2
z ψ

′, where ζ ′
z is the vertical component of vorticity

error and ∇2
z is the horizontal Laplacian) and is used by the

Met Office as the leading (or ‘Rossby-mode’) control variable
in VAR, Ingleby (2001). The horizontal rotational wind errors
(subscript ‘r’) are found from ψ ′ as follows: ur

′ = −∂ψ ′/∂y and
vr

′ = ∂ψ ′/∂x (where x and y are distances in the longitudinal and
latitudinal directions, respectively) with the condition that wind
errors do not contribute to flow into or out of the LAM domain.
This leads to the boundary condition of ψ ′ = constant (= 0) at the
edge of the domain, which is also the condition imposed by the
control variable transform in the Met Office VAR system. The
variances of ψ ′ at 1800 UTC (panel a) peak at a model level that
increases with latitude (about level 45 at the southern end to level
50 at the northern end). The slope of this feature reflects the basic
ψ field (not shown). This feature (apart from its diminishing
strength towards the lateral boundaries, which is a consequence
of the LAM and the boundary conditions) corresponds to the jet
in the upper troposphere. A similar feature is seen in the pressure
error variances (not shown), which indicates a strong large-scale
mass wind balance at these levels (a conclusion supported by
the balance analysis in Section 6.1). The variance fields change

only slightly from cycle to cycle. In the previous 1-h forecast
valid at 1700 UTC for instance, the peak in ψ does not slope
with latitude, but the basic structure of the variance field remains
(not shown).

The velocity potential error, χ ′, describes the horizontal diver-
gent wind error (δ′ = ∇2

z χ
′, where δ′ is the horizontal divergence

error) and is used as another control variable in VAR by the Met
Office. The horizontal divergent wind errors (subscript ‘d’) are
found from χ ′ as follows: ud

′ = ∂χ ′/∂x and vd
′ = ∂χ ′/∂y, again

with the condition of zero flow in/out of the domain. This leads
to the boundary condition of zero normal gradient of χ ′ at the
edge of the domain, which is also the condition imposed by the
control variable transform in the Met Office VAR system.

The variances of χ ′ at 1800 UTC (panel b) peak at levels that
are similar to those where ψ ′ variances peak. The variances of δ′

(not shown) have much finer scale structure than for the variances
of χ ′, and peak at points in the atmosphere where δ itself is high
(associated with convective activity) as in Fig. 2. This appears
to be true for cycles other than at 1800 UTC, showing clear flow
dependence.

Panels c and d are for temperature (T) and specific humidity
(q), which are variables output directly by the model. Fluc-
tuations in convective motion can have a significant effect on
temperature due to variations in latent heating/cooling, radia-
tive effects of cloud and adiabatic warming/cooling. Most of the
variability of T ′ variances (panel c) appears to lie along the top of
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the convection (again sloping with latitude). Specific humidity,
q′ is influenced by many processes, including convection which
can act to hydrate the air by transporting moisture upwards and
to dehydrate by precipitation and by transporting dry air down-
wards in downdraughts. Variances of q′ are shown in panel d.
There is no obvious correspondence between the presence or not
of convective motion (see Fig. 2c) and q′ variance features. South
of 50.7◦ the variances in q′ are fairly uniform up to level 30 or so
where there is little or no convection, and more patchy variance
fields elsewhere, but this apparent correspondence between q′

variance and convection is not seen in other cross sections. Vari-
ances above level 30 diminish because of the rapid decrease of
the specific humidity field itself with height.

Generally the factors affecting variance statistics include the
dynamics of the model during the latest forecast, and the histori-
cal evolution of the ensemble, including the observation network
in the last and previous ETKF (Ensemble Transform Kalman Fil-
ter) cycles. The complicated nature of these variances highlights
the need for flow-dependent information to be made available
for the data assimilation and an ensemble is shown to be a useful
source of this information.

4. Structure and correlation functions
in the SUK-1.5 and NAE models

Structure and correlation functions for forecast errors are the 3-D
fields of covariance and correlation between forecast perturba-
tions at each point in one field with perturbations at a reference
point of a reference field. They are a useful way to illustrate the
structure of forecast error statistics. Let Pf (ν ′

1(r1), ν ′
0(r0)) and

Cf (ν ′
1(r1), ν ′

0(r0)) be the sample covariance and sample correla-
tion, respectively, between the error of field ν ′

1 at position r1 and
the error of the reference field ν ′

0 at position r0.

Pf (ν ′
1(r1), ν ′

0(r0)) = 〈ν ′
1(r1)ν ′

0(r0)〉 = 1

N − 1

N∑
i=1

ν ′
1(r1)ν ′

0(r0),

Cf (ν ′
1(r1), ν ′

0(r0)) = Pf (ν ′
1(r1), ν ′

0(r0))

�(ν ′
1, r1)�(ν ′

0, r0)
, (1)

where ν ′
i represents a field that can be derived from model vari-

ables (u′, v′, p′, θ ′, q ′, etc.), the angled brackets indicate average
(in this case over the N = 24 ensemble members) and �(ν ′

i, ri) is
the standard deviation of ν ′

i(ri). Most of this work is concerned
with Cf . The primed notation indicates a perturbation (or error)
with respect to the ensemble mean, which is itself taken to be a
proxy for the truth for the purpose of computing the statistics. By
fixing ν ′

0 and r0, Pf and Cf give the ‘structure′ and ‘correlation’
functions, respectively.

Structure functions are useful because they can be compared
to the analysis increment field (analysis minus background fore-
cast) from the assimilation of a single observation of the ref-
erence field made at the reference point, for example, Dance
(2004). The analysis increment field is proportional to the col-
umn of the B-matrix corresponding to the observation’s location

and so such a comparison allows the conventional B-matrix used
in the data assimilation to be compared to the flow-dependent
Pf -matrix derived from the ensemble. Since standard devia-
tions are always positive, the structure function patterns are
found to be similar to the correlation function patterns, es-
pecially in horizontal plots of fields where � does not vary
strongly with horizontal position. Correlation functions are eas-
ier to plot than covariance functions (the former are always
bounded between ±1), so in the following subsections, the
analysis increments that emerge from single observation exper-
iments in VAR are compared with ensemble-derived correlation
functions.

4.1. Structure and correlation functions in NAE

Before proceeding to analyse correlation functions from SUK-
1.5, we first demonstrate that a 24-member ensemble is capa-
ble of revealing a signal in the correlation functions that re-
flects known relationships between the variables. Forecasts at
24 km resolution over the NAE domain are expected to obey
near geostrophic balance since this model represents the rele-
vant scales at the mid-latitudes, so this model is used to test
whether 24 members can show a geostrophic signal.

The left panels of Fig. 4 show ensemble-derived correlation
functions for 12-h NAE forecast perturbations of p′(r1), u′(r1)
and v′(r1) associated with a reference perturbation in pressure
at the cross (at r0) near the middle of the domain at level 13 (Ta-
ble 1). The right panels of Fig. 4 are the corresponding analysis
increments from a VAR run with a conventional B-matrix on the
NAE domain with a pseudo observation of pressure at the cross
position. The B-matrix for the NAE is static, has been tuned for
6-h forecast errors and gives rise to nearly homogeneous struc-
ture functions. If the 24-member ensemble is adequate to show
geostrophically related correlation signals (and assuming that
the VAR B-matrix is an appropriate representation of forecast
errors in this model) then the two sets of patterns should share
common features (but the actual values need not agree).

The large-scale pressure pattern (panel a) has a region of
strong positive correlation in agreement with the pressure anal-
ysis increment (panel b), but there are regions of strong anti-
correlation either side (north and south) in panel a, which do not
appear in panel b. The correlations of zonal and meridional winds
with pressure (panels c and e, respectively) each have dipole
structures associated with anti-cyclonic motion about the refer-
ence point. These features are present in the analysis increments
(panels d and f), and are the well-known geostrophically bal-
anced response to the pressure (e.g. Bartello and Mitchell, 1992;
Kalnay, 2002). The correlation plots do show longer length-
scales than the analysis increments, which may be explained by
the longer range of the NAE forecasts (12 h) compared to the
B-matrix statistics (tuned for 6 h).

The patterns that emerge in the left-hand panels of Fig. 4
do resemble those in the right-hand panel, but are subject to
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Fig. 4. Left-hand panels: correlation functions of (a) pressure, (c) zonal wind and (e) meridional wind with pressure (at the cross position)
calculated from an ensemble of 12-h NAE forecasts. Right-hand panels: VAR analysis increments of the same quantities for the NAE (tuned for 6-h
forecast errors) due to the assimilation of a single pressure observation (at the cross position). Results are for level 13 of the NAE and red (blue)
colours indicate positive (negative) values.

noise. To study how the level of noise changes as the number
of ensemble members changes, Fig. 5 shows ensemble-derived
correlations at lines through the cross in Fig. 4. Cases of 5,
15 and all 24 members are shown together with theoretical re-
sults as described in the caption. The correlations for pressure
with latitude (panel a), zonal wind with latitude (panel b) and
meridional wind with longitude (panel c) all show evidence of
less noise as the number of ensemble members increases (as
expected). Results appear to settle roughly towards the broad
structure of the theoretical curves (i.e. the 15- and 24-member
curves). This includes the lobes in panels b and c (cf. Figs. 4c
and e, respectively). Since the broad structures found in Fig. 5
appear to be robust against changes in the number of ensem-
ble members (as only the level of noise appears to change),
we consider the results found from a 24-member ensemble

a reasonable indicator of the broad structure of forecast error
correlations.

4.2. Structure and correlation functions in SUK-1.5

Figure 6 is the analogue of Fig. 4 but for the finer SUK-1.5 model,
and for 1-h forecasts. The correlation results shown in panels c
and e for u′ and v′, respectively, still show the characteristics
of geostrophic balance over the domain scale [as highlighted by
the VAR analysis increments (corresponding right-hand panels)
which arise from the B-matrix used which is formulated with
near geostrophic balance built-in]. This shows that this model
has a domain large enough for geostrophy to still be important.
From these pictures, however, it is not possible to assess how
important geostrophic balance is at the small scales since, for

Tellus 63A (2011), 3



504 R. N. BANNISTER ET AL.

Fig. 5. Correlation functions of (a) pressure and (b) zonal wind as a function of latitude and (c) meridional wind as a function of longitude. All plots
are on level 13 and through the cross in Fig. 4. Correlations are with pressure at the position of the cross in that figure and have been calculated with
5, 15 and 24 members according to the key. Theoretical curves have also been added on the basis that pressure correlations have a horizontal
lengthscale of 290 km and the wind correlations are found from geostrophic balance in the way described in Kalnay (2002).

example, it is impossible to distinguish between real small-scale
features and artefacts due to sampling noise. We return to this
issue in Section 6 where we use a more quantitative approach to
look at balances.

The VAR analysis increments are forced with zero boundary
conditions on all boundaries for p′ and θ ′, on the east and west
boundaries for u′, and on the north and south boundaries for v′.
This is done in VAR for practical reasons (e.g. for consistency
with the larger scale driving model at the lateral boundaries),
but the comparison with the correlation results does suggest that
this does change the correlation lengthscales artificially (e.g.
comparing p′ responses in panels a and b).

Figure 7 is similar to Fig. 6 but for θ ′ (correlated with p′ at
the cross position) where panels a and b are for level 30 and
panels c and d are for the latitude/level cross sections through
longitude of the cross (at r0). Panels a and b both show a large-
scale correlation in θ ′ (still due to the p′ perturbation at the
position of the cross), but the signs disagree. Panels c and d each
show vertical bands of alternating sign in the correlation between
θ ′(r1) and p′(r0), but the signs disagree roughly in a systematic
way. The VAR increments diagnose θ ′ from p′ in the following
way, ignoring the secondary effect of moisture increments as in

Bannister (2008b):

θ ′ =
[

gκ

cp

�0

(
∂�0

∂z

)−2
∂

∂z
− gκ

cp

(
∂�0

∂z

)−1

− κθ0

]
p′/p0,

(2)

where g is the acceleration due to gravity, κ = cp/cv , cp and
cv are the isobaric and isochoric specific heat capacities of air,
� is Exner pressure, z is height and variables with subscript 0
are reference state quantities rather than perturbations. Equation
(2) relates increments p′ and θ ′ due to hydrostatic balance. The
disagreement, especially with regard to the signs between pan-
els a and b, and c and d, suggest that hydrostatic balance is not
obeyed in SUK-1.5 in this cross section. It is unlikely that the
difference can be explained in terms of sampling error. First,
the ensemble result appears strong and of the wrong sign, and
second, the ensemble is capable of producing a result like panel
d at some points in other cross sections, which are not associ-
ated with rainfall (not shown), suggesting hydrostatic balance is
satisfied in some places. Similar patterns to that shown in panel
c are found also in correlations derived from a lower resolution
ensemble over the NAE domain (not shown). We investigate
hydrostatic balance further in Section 6.2.
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Fig. 6. Left-hand panels: correlation functions of (a) pressure, (c) zonal wind and (e) meridional wind with pressure (at the cross position)
calculated from an ensemble of 1-h SUK-1.5 forecasts. Right-hand panels: high-resolution VAR analysis increments of the same quantities (tuned
for 1-h forecast errors) due to the assimilation of a single pressure observation (at the cross position). All panels are for level 30 of SUK-1.5 and red
(blue) colours indicate positive (negative) values.

5. Correlation statistics in vertical cross
sections in SUK-1.5

The correlation and structure functions shown in the last section
are concerned with 3-D fields correlated to a fixed reference
position, r0. In this section we allow r0 to vary to give a selec-
tion of ensemble-derived forecast error correlation statistics for
SUK-1.5.

5.1. Point-by-point (local) correlation
functions in SUK-1.5

A selection of point-by-point correlations are plotted in Fig. 8
[point-by-point correlations are where r0 = r1 in (1)]. The lo-
cal correlations between streamfunction and pressure errors,

Cf (ψ ′(r1), p′(r1)) provide a rough guide to the degree of
geostrophic balance (panel a). This shows strong correlation
throughout the troposphere, especially in the upper troposphere.
The thickness of the layer where the correlation is positive and
very close to unity around level 50 (Table 1) is thinner above con-
vection, which is unsurprising as the Brunt-Väisälä frequency,
and hence gravity wave speed, is likely to be smaller close to
rather than away from convecting regions resulting in a slower
rate of geostrophic adjustment. Fourier transforming the en-
semble members and computing the same correlations, but as
a function of total horizontal wavenumber and level (panel b)
shows that only the smallest wavenumbers (<0.0001 m−1), or
equivalently the largest lengthscales (>50 km) (note the length-
scale axis above the spectral plots) are responsible for the height
dependence in panel a as the correlations are very weak for
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Fig. 7. Left-hand panels: correlation functions of potential temperature with pressure (at the cross position) calculated from an ensemble of 1-h
SUK-1.5 forecasts. Right-hand panels: high-resolution VAR analysis increments of potential temperature (tuned for 1-h forecast errors) due to the
assimilation of a single pressure observation (at the cross position). The top panels are for level 30 of SUK-1.5 and the bottom panels are for the
cross section at constant longitude through the cross position and red (blue) colours indicate positive (negative) values.

most of the spectral space shown. A more targeted analysis of
geostrophic balance is given in Section 6.1.

The forecast error covariance formulations used in earlier ver-
sions of VAR systems were often based on the assumption that
the correlations between rotational and divergent wind errors,
Cf (ψ ′(r1), χ ′(r1)), are zero, Bannister (2008b). The local corre-
lations between ψ ′ and χ ′ are shown in panel c, which shows
that this assumption is not good in this system (although it is
rarely found to be well satisfied, e.g. Bannister et al., 2008). By
averaging additionally over longitude, as well as over ensemble
member (to reduce sampling noise), a similar picture to panel c
emerges, but with slightly reduced correlations at middle tropo-
spheric levels. The wavenumber dependence of this correlation
(panel d) shows no strong dependence on the range of scales of
motion represented in SUK1.5, indicating that this assumption
made by VAR is poor at all scales.

5.2. Vertical correlation functions in SUK-1.5

In this subsection, the reference point of the correlations (r0

in eq. 1) varies in the horizontal, and r1 is forced to have the
same horizontal position as r0, but is allowed to have a variable
height (analogous correlations are also found as a function of
total horizontal wavenumber whereby the error fields are first
Fourier transformed). Correlations plotted in this way show the
vertical structure of correlations as a function of position (or

wavenumber). Figures 9 and 10 show vertical correlations be-
tween a selection of pairs of perturbations where r0 is fixed at
level 30. The left-hand panels show correlations as a function of
latitude (at the particular longitude of Fig. 2c), and the right-hand
panels as a function of wavenumber.

The vertical correlations of θ ′ with p′ at level 30 (Table 1) vary
with latitude (panel a of Fig. 9) in a similar way to that shown
in Fig. 7(c) (where the source point is fixed at the position of the
cross). This similarity is not surprising as the horizontal pres-
sure correlations between that fixed point and all other points
on level 30 (Fig. 6a) are strong, so the response in Fig. 7(c)
is as though the reference point is everywhere on that level.
The basic vertical structure of the correlations does not change
significantly with wavenumber (panel b), which shows positive
correlations up to level 50 and a band of negative correlations
above this. There is evidence of a change of sign in correla-
tion at some small wavenumbers from positive below level 30
to negative above this level. This is similar to the hydrostatic
response expected around level 30 (cf. Fig. 7d each side of level
30). Additionally the positive correlations do strengthen with
increasing wavenumber. This is an example of the changing na-
ture of the tropospheric flow regime to one where the aspect ratio
becomes larger at smaller horizontal scales (a large aspect ratio
means that large vertical scales are associated with small hor-
izontal scales). The transition to this new regime starts around
wavenumber 0.0006 m−1 (equivalent to 10 km lengthscale). This

Tellus 63A (2011), 3



ENSEMBLE PREDICTION PART II: FORECAST ERROR STATISTICS 507

Fig. 8. Correlation between ψ ′ and p′ (panels a and b) and between ψ ′ and χ ′ (panels c and d) computed on a point-by-point basis in latitude space
at the same longitude as shown in Fig. 2(c) (left-hand panels) and in spectral space (right-hand panels). Red (blue) colours indicate positive
(negative) correlations. Note that lengthscale axes are given at the top of the wavenumber plots.

feature, which has not to our knowledge been shown in previous
studies (as previous models have been too coarse, e.g. Berre,
2000, which had a lower scale limit of 10 km), will be studied
in later work by investigating how it can be reproduced with al-
ternative hypotheses to those currently used in background error
covariance schemes for synoptic scales.

The vertical correlations for χ ′ with itself show no major
structural changes with latitude (panel c). The 3-D isotropy (3-
D isotropy is where large vertical scales are associated with large
horizontal scales) is preserved over all wavenumbers considered
(panel d) for this variable, even when the convective-scale regime
shows up in other variables. This behaviour is seen over all
lengthscales considered in other studies, e.g. Berre (2000) and
Ingleby (2001).

The vertical correlations of θ ′ with itself (panel a of Fig. 10)
show evidence of structures with larger aspect ratio at latitudes
north of 52.3◦ than south of this latitude. This is the region where
most of the convection is occurring along this cross section
(see Fig. 2c). This effect shows up in the wavenumber depen-
dence (panel b). This shows the large-scale 3-D isotropy signa-
ture (as found in χ ′ autocorrelations above), but here only down
to horizontal lengthscales of about 10 km. At smaller horizontal
lengthscales the vertical lengthscales increase and the band of

negative correlations in the upper troposphere strengthen. This
has potentially important consequences for convective-scale data
assimilation as it means, for example, that high-resolution satel-
lite measurements of T in the upper troposphere may contain
important information about T in the lower parts of the tropo-
sphere. This link can be exploited only if this effect is represented
in the background error covariances used in the data assimila-
tion. A similar picture is seen in the vertical correlations of q′

with itself (panels c and d) apart from, in this case, there is no
band of negative correlations above level 50.

6. Balance diagnostics in SUK-1.5

A scale analysis of the momentum equations reveals that lin-
ear balance (essentially geostrophic balance) is expected to hold
for small Rossby number (Ro) and hydrostatic balance is ex-
pected to hold for small Ro × W/U , where Ro = U/(Lf ) is the
Rossby number, U is the characteristic horizontal flow speed,
W is the characteristics vertical flow speed, L is the horizontal
lengthscale and f is the Coriolis parameter, see for example,
section 11.4.2 of Salby (1996). Both kinds of balance are im-
portant to conventional forecast error covariance modelling in
VAR (e.g. Bannister, 2008b), but are expected to break down to
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Fig. 9. Vertical correlations with level 30 between θ ′ and p′ (panels a and b) and χ ′ and itself (panels c and d) computed in latitude space at the same
longitude as shown in Fig. 2(c) (left-hand panels) and in spectral space (right-hand panels). Red (blue) colours indicate positive (negative)
correlations. Note that lengthscale axes are given at the top of the wavenumber plots.

some extent as the scale of the motion reduces, as is possible
in high-resolution models. In this section we try to diagnose at
what scales the geostrophic and hydrostatic balances are found
to break down, if at all, in the SUK-1.5 forecasts according to our
balance diagnostics described below. This is an important aspect
to determine as it will provide a guide on the scales below which
a new approach to forecast error covariance modelling will be
required in data assimilation.

6.1. Linear balance diagnostic

The starting point for the linear balance diagnostic are the hor-
izontal momentum equations of the dynamical core of the Met
Office model in Davies et al. (2005) from which the equation for
horizontal divergence, δ is derived. The result is linearized with
respect to the ensemble mean giving a mass part, M′, a wind
part, W ′ and other terms, as follows:

Dδ′

Dt
= M′ + W ′ + horiz. Coriolis + metric terms

+ forcing + other terms, (3)

where

M′ = cpθv0

(
∂2�′

∂x2

)
z

+ cpθv0

(
∂2�′

∂y2

)
z

+ cp

(
∂2�0

∂x2

)
z

θ ′
v

+ cp

(
∂2�0

∂y2

)
z

θ ′
v,

(4)

and

W ′ = −f

(
∂v′

∂x

)
z

+ f

(
∂u′

∂y

)
z

− ∂f

∂x
v′ + ∂f

∂y
u′. (5)

In these expressions, D/Dt is the Lagrangian derivative, u, v,
θv and � are zonal wind, meridional wind, virtual potential
temperature and Exner pressure, respectively, subscript 0 indi-
cates the ensemble mean and a prime indicates deviation from
this mean (both are functions of position). Horizontal deriva-
tives are performed on a constant height level (indicated by
the subscript z), where we use the following relations with the
derivatives on constant model level (subscript η): (∂γ /∂χ )z ≈
(∂γ /∂χ )η − (∂z/∂χ )η(∂γ /∂z) and (∂2γ /∂χ 2)z ≈ (∂2γ /∂χ 2)η −
2(∂z/∂χ )η(∂2γ /∂z ∂χ )η + (∂z/∂χ )2

η (∂2γ /∂z2), where γ is a
model quantity and χ is either x or y. Note that the ∂f /∂x term is
present in (3) to account for a rotated grid where x and y may not
necessarily correspond to longitude and latitude, respectively.
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Fig. 10. Vertical correlations with level 30 between θ ′ and itself (panels a and b) and q′ and itself (panels c and d) computed in latitude space at the
same longitude as shown in Fig. 2(c) (left-hand panels) and in spectral space (right-hand panels). Red (blue) colours indicate positive (negative)
correlations. Note that lengthscale axes are given at the top of the wavenumber plots.

The values M′ and W ′ are computed for each ensemble
member and the correlation between them (over the ensem-
ble) is found. Linear balance is then assumed to hold if these
two quantities are strongly anti-correlated on the basis that if
other terms (especially Dδ/Dt) vary with a comparable magni-
tude then the strong anti-correlation will be lost. Figure 11 (a)
shows correlation between M′ and W ′ averaged over all lati-
tudes for the longitude corresponding to that shown in Fig. 2(c)
and for three model levels. The effective resolutions of the
ensemble fields are first degraded to have different effective
grid sizes from 0 (no degradation) to 100 (meaning the mem-
bers have been averaged over surrounding points extending 100
grid boxes in each direction making the effective grid length
150 km). This allows us to explore the relevance of linear bal-
ance at different effective scales. The two levels shown that are
inside the troposphere—levels 20 (continuous line) and 45 (dot-
ted line)—show a general strengthening (correlation → −1) of
the mass-wind anti-correlation with increasing scale. Level 20
does show a slight decrease of the anti-correlation above 65 ×
1.5 km effective grid size, which we assume is due to imbal-
ance introduced by sampling over regions affected by orography.
Level 45, however, is less susceptible to this effect and behaves
in the expected way. Level 60 lies close to the tropopause and

is inherently unbalanced, as found in global models (Ingleby,
2001). Approximate heights and pressures of these levels are
shown in Table 1.

According to this diagnostic there is no effective grid size
where there is a sudden change in mass-wind balance. Note
that the anti-correlation of −0.5 for level 45 corresponds to to
50 × 1.5 km, which indicates that, at horizontal scales below
75 km, geostrophic balance becomes less important. This is not
dissimilar to the result of Berre (2000) who looked at mass and
vorticity correlations of spectral modes of ALADIN forecasts,
even though Berre used a population of differences between 36-
and 12-h forecasts rather than from an ensemble.

6.2. Hydrostatic balance diagnostic

A similar diagnostic can be composed to estimate the degree
of hydrostatic balance. The vertical wind (w′) equation from
Davies et al. (2005) is the relevant equation to look at hydrostatic
balance. In linearized form this is

Dw′

Dt
= P ′ + T ′ + g + Coriolis + metric terms

+ forcing + other terms, (6)
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Fig. 11. Panel a: correlations between terms M′ and W ′ in the
horizontal divergence eq. (3) at three model levels (see legend) and
averaged over all latitudes. Panel b: correlations between terms P ′ and
T ′ in the vertical momentum eq. (6) at two model levels (see legend)
and averaged between the two latitudes in the caption. In both panels
data are for the longitude as that of Fig. 2(c).

where

P ′ = θv0
∂�′

∂z
, (7)

and

T ′ = ∂�0

∂z
θ ′
v. (8)

Hydrostatic balance is satisfied exactly if 0 = P ′ + T ′, which
is the perturbation version of g + cpθ v∂�/∂z = 0, which is a
more familiar form of hydrostatic balance.

In an analogous way to the mass-wind correlations, the values
P ′ and T ′ have been computed for each ensemble member and
the correlation between them has been found. Hydrostatic bal-
ance is then assumed to hold if these two quantities are strongly
anti-correlated. Figure 11(b) shows correlation between P ′ and
T ′ averaged over latitudes 52.8–53.0◦ for the longitude corre-
sponding to that shown in Fig. 2(c) and for two model levels.
This latitude band has been chosen because it coincides with
convection. Model levels 20 (continuous line) and 34 (dotted
line)—see Table 1—have been chosen because they are those
that have, respectively, the maximum and minimum degree of
hydrostatic balance in the latitude band. The correlations are
shown as a function of the degraded resolution of the ensem-

ble members. According to this diagnostic, there is monotonic
strengthening of the degree of hydrostatic balance as the effec-
tive scale increases. This may be thought of as the averaging-out
of non-hydrostatic effects over gradually larger areas. Never-
theless, the anti-correlation between P ′ and T ′ remains strong,
even down to the 1.5 km grid scale (no spatial averaging) in the
region of convection (note the range of correlation in Fig. 11b
goes from −0.99 to −0.91). In the light of the result in panels
a and c of Fig. 7 (suggesting lack of hydrostatic balance), this
indicates that even anti-correlations as strong as −0.98 in this
diagnostic may indicate a significant departure from hydrostatic
balance. Extrapolating the curves backwards would suggests a
rapid weakening of hydrostatic balance at scales much smaller
than 1.5 km.

7. Discussion and conclusion

This work has served to highlight some important differences
between short-range forecast error statistics at convective-scales
and those at synoptic and larger scales. Until recently the scales
of motion over which forecast error statistics have been studied
was from global down to 10 km at the smallest. This paper uses
an ensemble of forecasts made with a Met Office convection-
permitting model with a 1.5 km grid length over the Southern
United Kingdom to gain knowledge down to such small scales.
This study is important as forecasts are thought to have different
error properties at convective-scales, and these should be con-
sidered when designing a background error covariance scheme
valid for variational data assimilation at these scales.

Maps of precipitation and divergence have been used to iden-
tify regions of convecting and non-convecting air and much of
this study has focused on statistics within one cross section that
has both types of flow.

Statistics have been derived from an ensemble of 1-h fore-
casts based on perturbations from the Met Office’s MOGREPS
ensemble prediction system adapted to work with SUK-1.5. For
purposes of this work we assume that the 24 ensemble members
(1 control and 23 perturbations) are representative of a probabil-
ity distribution function that describes knowledge of the actual
forecast error. This assumption is impossible to justify thor-
oughly without the availability of more members but we have
attempted to show that our results remain useful. By studying
univariate and multivariate correlations for the lower resolution
ensemble over the NAE domain for a variable number of ensem-
ble members (<24), we see that the results appear to settle on
those found for 24 members. For the high-resolution SUK-1.5
model, we have shown results of instantaneous correlations at
1800 UTC. We have also time-averaged many of the covariance
results shown in this paper over the four last ETKF 1-h forecast
cycles (validity times 15, 16, 17 and 1800 UTC). We have not
shown these averaged results as the important structures present
in the instantaneous results remain. This adds some robustness
to our results as it suggests that although noisy, 24-member
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ensembles do contain signals that are likely to be physically
reasonable.

The variance statistics indicate the degree of confidence in
the forecasts and show signs of flow dependence. For instance
T ′ variances peak at levels corresponding to the top of convec-
tion. The background error variances implied from the current
experimental version of VAR for use with SUK-1.5, which are
found from an NMC procedure (not shown), can be very differ-
ent from the ensemble-derived variances, which motivates our
work to develop a VAR system that has forecast error covari-
ance statistics which are more appropriate to the high-resolution
assimilation and forecasting problem.

We find that some variables, notably θ ′ and q′, have autocorre-
lation functions that deviate from 3-D isotropy at the convective-
scale. Large horizontal scales are associated with large vertical
scales (3-D isotropy) for horizontal scales larger than about
10 km only. Below the 10 km scale, the correlation functions
can have large aspect ratios, which are associated with regions of
convection. Other variables, notably χ ′, maintain 3-D isotropy
at all scales.

The domain of the SUK-1.5 model is still large enough to
have scales that show a degree of geostrophic balance. This
shows strong correlations between pressure and rotational wind
perturbations for scales somewhat larger than 50 km through-
out most of the free troposphere. An analysis of the correlation
between mass and wind terms in the linear balance equation con-
firms this result, but does find imbalances in the stratosphere at all
scales and in the boundary layer, which is affected by the surface
and orography. In the free troposphere we find that geostrophic
balance is significant with greater than |−0.5| correlation coef-
ficient at horizontal scales above about 75 km (a correlation of
−1 indicates perfect geostrophic balance). The degree of bal-
ance reduces as the horizontal scale shortens, but our correlation
diagnostic does not show a sudden drop in geostrophic balance,
but is instead a gradual process.

Hydrostatic balance too is satisfied less strongly as the scale
reduces, and inside convecting regions. Our correlation diag-
nostic for hydrostatic balance remains high, even at the grid
scale and inside convection where correlations are greater than
|−0.9| (a correlation of −1 indicates perfect hydrostatic bal-
ance). Since the vertical correlations between p′ and θ ′ shown in
Fig. 7(c) are not characteristic of hydrostatic balance, this sug-
gests that hydrostatic correlations very close to −1 (i.e. much
stronger than |−0.9|) must be found to indicate that this balance
is prevalent. It is difficult to calibrate this diagnostic against the
existance or not of hydrostatic balance using the information
that we have, but we may suggest that the scale where the two
curves in Fig. 11(b) separate may indicate a breakdown of hy-
drostatic balance at some levels in the column. This happens
at about 25 grid lengths (35 km) inside this convecting region.
Vetra-Carvalho et al. (2010) compared the vertical correlations
of potential temperature perturbations, θ ′– θ ′, with those of the
‘hydrostatic potential temperature′ (found from pressure pertur-

bations through (2)), θ ′
H–θ ′

H after degrading the resolution of
the fields in a similar way as is done here. For their case study
they found that the θ ′– θ ′ and θ ′

H–θ ′
H correlation matrices differ

at horizontal lengthscales below 20 km in convecting regions.
Their and our cases are different, but the two results are in the
same ballpark. This will be examined in forthcoming work in
the context of high-resolution data assimilation.

All of these results have potentially significant implications
for high-resolution data assimilation, which will require mod-
ification to account for the diminishing balance (especially
geostrophic balance). For example, the Met Office’s and oth-
ers’ schemes use the rotational wind as the ‘master’ balanced
variable from which other balanced variables are derived, for ex-
ample, balanced pressure. The balanced pressure is augmented
with an unbalanced pressure variable. The significance of this
partitioning is so that both variables (rotational wind and unbal-
anced pressure) are taken to be mutually uncorrelated. This relies
on the property that the rotational wind describes the balanced
flow, which is no longer the case given the lack of geostrophic
balance at small scales. This will be studied in future work,
which will consider how the diminishing balance properties po-
tentially invalidate the existing choice of control variables and
how new ones could be chosen to have convective-scale proper-
ties. It should be noted that although the effects of forecast errors
at convective-scale need to be considered in high-resolution data
assimilation systems, errors for the large-scale quasi-balanced
flow still need to be modelled (e.g. using current methods) so that
the synoptic-scale and mesoscale parts of the flow are captured
realistically (as stressed in, e.g. Lean et al., 2008).
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