473 research outputs found

    Seasonal variation of the 11 year solar cycle effect on the middle atmosphere: Role of the quasi biennial oscillation

    Get PDF
    Before the introduction of the Quasi Biennial Oscillation (Q.B.O.) in the study of the solar atmosphere relationship by Labitzke (1987) and Labitzke and Van Loon (1988), the only region of the atmosphere where an effect of a change in solar activity was generally admitted was the mesosphere. The response of the mesosphere, in phase with the solar activity, was found to be about one order of magnitude above model expectancy (around 10 to 20 Kelvin). It was observed independently of the season and maximized around 70 km (Chanin et al. 1987). However, from the same study, it was shown that the response of the stratosphere of opposite sign, clearly seen during winter and autumn, was at the threshold of detection in spring and summer. In the stratosphere, it was shown later that the separation of the data taking into account the sign of the Q.B.O. amplifies the negative correlation of the stratospheric temperature with solar activity in winter; it then becomes more significantly negative for the East phase of the Q.B.O. than when the data are all mixed (Labitzke and Chanin 1988). The studies of the seasonal response of the atmosphere to solar effect is crucial to understand the possible mechanism responsible of such a solar activity Q.B.O. relationship, knowing that the global dynamic circulation is quite different according to the seasons. The question is examined as to whether such separation of the data according to the phase of the Q.B.O. has any impact on the solar response of the middle atmosphere for seasons other than winter

    Long-term changes of the upper stratosphere as seen by Japanese rocketsondes at Ryori (39°N, 141°E)

    Get PDF

    Contribution of stratospheric warmings to temperature trends in the middle atmosphere from the lidar series obtained at Haute-Provence Observatory (44°N)

    Get PDF
    International audienceThis study describes a method to calculate long-term temperature trends, as an alternative to the ones based on monthly mean temperatures, which are highly impacted by the high winter variability partially due to wave-mean flow interactions like Sudden Stratospheric Warmings (SSW). This method avoids the strong influence of SSWs and provides "background" temperature trend estimates which are in better agreement with expected direct radiative effects. The data set used results from lidar measurements - performed above southern France continuously since late 1978 - combined with radiosonde profiles. With this new methodology, the long-term trends during winter at 40 km shows a larger cooling per decade (−2 ± 0.4 K) than when the mean temperature is used (−0.4 ± 0.4 K). The background temperature trend is closer to the summer trend estimates which are similar whatever the temperature proxy used, due to the absence of SSWs (−2.9 ± 0.3 K per decade with the mean-based method and −3.4 ± 0.3 K per decade with the background-based calculation). Based on this background temperature, composite evolutions of winter anomalies for both vortex-displacement and vortex-splitting major SSWs have been displayed: in both cases the largest warming occurs at the time of the SSW in the upper stratosphere, with mean amplitudes of more than 10 K. A warm signal in the upper mesosphere could suggest a potential precursory role of gravity waves. Displacement-type events present an 18-day periodicity, which is a clear sign of the wave number one Rossby wave. Colder tropospheric temperatures are noticed before and during the SSW, and warmer ones after the event, with a stronger signal for split-type events

    Overview of the Temperature Response in the Mesosphere and Lower Thermosphere to Solar Activity

    Get PDF
    The natural variability in the terrestrial mesosphere needs to be known to correctly quantify global change. The response of the thermal structure to solar activity variations is an important factor. Some of the earlier studies highly overestimated the mesospheric solar response. Modeling of the mesospheric temperature response to solar activity has evolved in recent years, and measurement techniques as well as the amount of data have improved. Recent investigations revealed much smaller solar signatures and in some case no significant solar signal at all. However, not much effort has been made to synthesize the results available so far. This article presents an overview of the energy budget of the mesosphere and lower thermosphere (MLT) and an up-to-date status of solar response in temperature structure based on recently available observational data. An objective evaluation of the data sets is attempted and important factors of uncertainty are discussed

    Statistical estimation of stratospheric particle size distribution by combining optical modelling and lidar scattering measurement

    Get PDF
    International audienceA method for estimating the stratospheric particle size distribution from multiwavelength lidar measurements is presented. It is based on matching measured and model-simulated backscatter coefficients. The lidar backscatter coefficients measured at the three commonly used wavelengths 355, 532 and 1064 nm are compared to a precomputed look-up table of model-calculated values. The optical model assumes that particles are spherical and that their size distribution is unimodal. This inverse problem is not trivial because the optical model is highly non-linear with a strong sensitivity to the size distribution parameters in some cases. The errors in the lidar backscatter coefficients are explicitly taken into account in the estimation. The method takes advantage of the statistical properties of the possible solution cluster to identify the most probable size distribution parameters. In order to discard model-simulated outliers resulting from the strong non-linearity of the model, solutions farther than one standard deviation of the median values of the solution cluster are filtered out, because the most probable solution is expected to be in the densest part of the cluster. Within the filtered solution cluster, the estimation algorithm minimizes a cost function of the misfit between measurements and model simulations. Two validation cases are presented on Polar Stratospheric Cloud (PSC) events detected above the ALOMAR observatory (69° N – Norway). A first validation is performed against optical particle counter measurements carried out in January 1996. In non-depolarizing regions of the cloud (i.e. spherical particles), the parameters of an unimodal size distribution and those of the optically dominant mode of a bimodal size distribution are quite successfully retrieved, especially for the median radius and the geometrical standard deviation. As expected, the algorithm performs poorly when solid particles drive the backscatter coefficient. A small bias is identified in modelling the refractive index when compared to previous works that inferred PSC type Ib refractive indices. The accuracy of the size distribution retrieval is improved when the refractive index is set to the value inferred in the reference paper. Our results are then compared to values retrieved with another similar method that does not account for the effect of the measurements errors and the non-linearity of the optical model on the likelihood of the solution. The case considered is a liquid PSC observed over northern Scandinavia on January 2005. An excellent agreement is found between the two methods when our algorithm is applied without any statistical filtering of the solution cluster. However, the solution for the geometrical standard deviation appears to be rather unlikely with a value close to unity (σ≈1.04). When our algorithm is applied with solution filtering, a more realistic value of the standard deviation (σ≈1.27) is found. This highlights the importance of taking into account the non linearity of the model together with the lidar errors, when estimating particle size distribution parameters from lidar measurements

    Temperature climatology with Rayleigh lidar above Observatory of Haute-provence : dynamical feedback

    Get PDF
    International audienceRayleigh lidar in synergy with satellite observations (SSU and AMSU) allow insuring an efficient monitoring and showing that cooling has continued. New approach for trend detection has been developed allowing a better estimate of changes due to radiative forcing. Stratospheric Warmings and gravity waves contribute to insure a dynamical feedback of the long-term changes

    A Raman lidar at La Reunion (20.8° S, 55.5° E) for monitoring water vapour and cirrus distributions in the subtropical upper troposphere: preliminary analyses and description of a future system

    Get PDF
    A ground-based Rayleigh lidar has provided continuous observations of tropospheric water vapour profiles and cirrus cloud using a preliminary Raman channels setup on an existing Rayleigh lidar above La Reunion over the period 2002–2005. With this instrument, we performed a first measurement campaign of 350 independent water vapour profiles. A statistical study of the distribution of water vapour profiles is presented and some investigations concerning the calibration are discussed. Analysis regarding the cirrus clouds is presented and a classification has been performed showing 3 distinct classes. Based on these results, the characteristics and the design of a future lidar system, to be implemented at the new Reunion Island altitude observatory (2200 m) for long-term monitoring, is presented and numerical simulations of system performance have been realised to compare both instruments

    LiDAR for Atmosphere Research over Africa (LARA)

    No full text
    International audienceThis paper describes the LIDAR for atmosphere research over Africa and current initiatives being undertaken in South Africa. A mobile LIDAR system is being developed at the Council for Scientific and Industrial Research (CSIR) National Laser Centre (NLC), Pretoria (25°5 ′ S;28°2 ′ E), South Africa, for remote sensing the atmosphere. The initial results conclude that the system is capable of providing aerosol/cloud backscatter measurements for the height region from ground to 40 km with a 10 m vertical height resolution

    Investigation of gravity wave activity based on NDMC, NDACC and CTBTO measurements

    Get PDF
    GRIPS (Ground based Infrared P-branch Spectrometer) airglow measurements allow the derivation of kinetic temperature in the mesopause region during night with a temporal resolution of 10s to 15s. Amongst others, these time series can be used for the investigation of atmospheric dynamics like gravity wave activity. GRIPS measurements are performed in the framework of NDMC – the international Network for the Detection of Mesospheric Change. The project ARISE combines NDMC, NDACC (Network for the Detection of Atmospheric Composition Change) and CTBTO (Comprehensive Nuclear-Test-Ban Treaty Organization)measurements to infer a new 3D image of atmospheric dynamics from ground to mesopause. In this context, GRIPS data of about two to three years collected at the Observatory Haute-Provence, France and Catania, Italy are utilized to derive an index for shortand long-period gravity wave activity on daily and seasonal base. This time period includes also a stratospheric warming event. Potential energy density is calculated and compared with NDACC measurements at Haute-Provence; differences are discussed. For the measurements at the Italian station, comparisons of gravity wave and volcanic activity relying on infrasound array and seismic measurements are performed. First hints for volcanic induced mesopause gravity wave activity are presented
    • …
    corecore