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Abstract. A method for estimating the stratospheric particle
size distribution from multiwavelength lidar measurements
is presented. It is based on matching measured and model-
simulated backscatter coefficients. The lidar backscatter co-
efficients measured at the three commonly used wavelengths
355, 532 and 1064 nm are compared to a precomputed look-
up table of model-calculated values. The optical model as-
sumes that particles are spherical and that their size distribu-
tion is unimodal. This inverse problem is not trivial because
the optical model is highly non-linear with a strong sensi-
tivity to the size distribution parameters in some cases. The
errors in the lidar backscatter coefficients are explicitly taken
into account in the estimation. The method takes advantage
of the statistical properties of the possible solution cluster to
identify the most probable size distribution parameters. In
order to discard model-simulated outliers resulting from the
strong non-linearity of the model, solutions farther than one
standard deviation of the median values of the solution clus-
ter are filtered out, because the most probable solution is ex-
pected to be in the densest part of the cluster. Within the fil-
tered solution cluster, the estimation algorithm minimizes a
cost function of the misfit between measurements and model
simulations.

Two validation cases are presented on Polar Stratospheric
Cloud (PSC) events detected above the ALOMAR obser-
vatory (69◦ N – Norway). A first validation is performed
against optical particle counter measurements carried out in
January 1996. In non-depolarizing regions of the cloud (i.e.
spherical particles), the parameters of an unimodal size dis-
tribution and those of the optically dominant mode of a bi-
modal size distribution are quite successfully retrieved, es-
pecially for the median radius and the geometrical standard
deviation. As expected, the algorithm performs poorly when
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solid particles drive the backscatter coefficient. A small bias
is identified in modelling the refractive index when compared
to previous works that inferred PSC type Ib refractive in-
dices. The accuracy of the size distribution retrieval is im-
proved when the refractive index is set to the value inferred
in the reference paper.

Our results are then compared to values retrieved with an-
other similar method that does not account for the effect of
the measurements errors and the non-linearity of the optical
model on the likelihood of the solution. The case considered
is a liquid PSC observed over northern Scandinavia on Jan-
uary 2005. An excellent agreement is found between the two
methods when our algorithm is applied without any statisti-
cal filtering of the solution cluster. However, the solution for
the geometrical standard deviation appears to be rather un-
likely with a value close to unity (σ≈1.04). When our algo-
rithm is applied with solution filtering, a more realistic value
of the standard deviation (σ≈1.27) is found. This highlights
the importance of taking into account the non linearity of the
model together with the lidar errors, when estimating particle
size distribution parameters from lidar measurements.

1 Introduction

Stratospheric particles play an important role in atmospheric
chemistry (WMO, 2007) and, in the case of large volcanic
eruption, in the earth radiative budget (Robock, 2005). For
example, Polar Stratospheric Clouds (PSC) are a key ele-
ment in polar ozone depletion by providing the surfaces for
chlorine activation through heterogeneous chemistry (Peter,
1997; Charlson and Heintzenberg, 1995). Characterizing and
understanding stratospheric particles remains a major sci-
entific issue. The most important characteristics of strato-
spheric particles are their size distribution, shape and com-
position. This information can be used to calculate radiative
properties of particles, rates of heterogeneous chemistry or
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gravitational sedimentation (ASAP, 2006). But, very few
measurements give access to the full size distribution of
stratospheric particles. They are mostly balloonborne in-
situ measurements (Hofmann and Rosen, 1980; Hofmann,
1990; Deshler et al., 2003) and remain very rare. Re-
trievals of stratospheric particles size distribution have been
performed using aerosol extinctions from satellite measure-
ments at multiple wavelengths, for instance using SAGE
(Stratospheric Aerosol and Gas Experiment) and SAGE II
data (McCormick et al., 1979). Here, we focus our at-
tention on aerosol backscatter coefficients from lidar data.
Lidar measurements have been used to detect stratospheric
particles since the early 1960s (Junge et al., 1961; Fiocco
and Smullins, 1963). They have been used as a proxy for
the stratospheric aerosol loading (David et al., 1997; ASAP,
2006).

Direct determination of the particle size distribution from
uniwavelength lidar measurements is theoretically precluded
because of a lack of constraints (Müller and Quenzel, 1985).
However, there have been attempts to characterize parti-
cle size distribution from multiwavelength Raman lidar data
(Müller et al., 1998; Veselovskii et al., 2002, 2005). This typ-
ical inverse problem can be presented in the following way:
given a set of lidar observations and optical modelling of the
observations, how can the most probable aerosol size distri-
bution be estimated? This problem is often addressed by as-
suming model linearity and normally distributed errors. Most
retrieval methods are only based on the least square crite-
rion (i.e. minimal discrepancy between measured and model-
simulated quantities, variance weighted by the errors). Note
that, in some cases, the criterion is used without even consid-
ering observation errors. This least-square criterion should
lead to the maximum likelihood estimate and to a minimum
variance for the analysis error (error in the estimation) if all
the errors are Gaussian, unbiased and the model quasi-linear
(Lahoz et al., 2007).

In our case, the model is highly non linear (see Sect. 3.3).
It is very sensitive to the size distributions parameters in
some cases, and, as a consequence, the least square estima-
tor may not always give the most probable solution depend-
ing on the magnitude of the observation errors. In addition,
even if the errors in the observables were to be normally
distributed, the non linearity of the model would result in
a Probability Density Function (PDF) of the solution that is
not necessarily Gaussian, meaning that the PDF cannot be
described by its first and second moment. Therefore, the en-
tire shape of the solution PDF has to be considered.

The best match estimator, identified as the minimal differ-
ence between measured and modelled quantities in the least
square sense, is usually the most probable solution when er-
rors in the observables are negligible and the model quasi-
linear. In our case, errors in the lidar retrieved backscatter
coefficient are not at all negligible, and so it is important to
check whether the best match solution is the most probable
solution.

It is worth pointing out that the need to find a physical
solution has led to added constraints on the form or prop-
erties of the solution. An example of such a constraint is
the smoothness of the solution for vertical profile retrievals
in regularization techniques (Tikhonov and Arsenin, 1977;
Müller et al., 1999, 2000; Tarantola, 2005). Regulariza-
tion methods account for the lidar errors in the retrieval pro-
cess when setting the regularization parameter choice rules
(Müller et al., 1999). An accurate retrieval also often requires
numerous optical quantities (backscatter and/or extinction
coefficients) at different wavelengths. With enough con-
straints, regularization techniques could also enable the de-
termination of the refractive index (Veselovskii et al., 2004).

In the stratosphere, the particle extinction coefficient is
measured with a limited accuracy, because very few pho-
tons are detected by the lidar at stratospheric altitudes. In
addition, most of the best-equipped lidar stations only mon-
itor the stratosphere at three wavelengths, typically at 355,
532 and 1064 nm. Because of these two limitations, the
regularization technique is not necessarily the most suited
approach for retrieving stratospheric particle size distribu-
tions from lidar data. In this paper, we explore an alter-
native method based on the comparison between measured
and model-simulated Backscatter Coefficients (BC), using a
Monte Carlo approach. The formulation of the method is in-
spired by the works of Beyerle et al. (1994) and Mehrtens et
al. (1999). The retrieval algorithm minimizes a cost function
of the misfit between measurements and model simulations
with the control variables being the parameters of the PSC
size distribution. The errors in the measurements are explic-
itly taken into account in the search for a solution. A cluster-
based filtering of the solution pool ensures both stability and
reliable error estimation. The refractive index is determined
from the particle composition calculated by the microphys-
ical model, taking into account both sulphuric acid aerosols
and liquid type Ib PSC particles.

The paper is organized as follow. As the method is
applied to the multiwavelength lidar measurements per-
formed at the Arctic Lidar Observatory for Middle Atmo-
sphere Research (ALOMAR–69◦ N–Norway), the setup of
the Rayleigh/Mie/Raman (RMR) lidar is briefly presented in
Sect. 2. The size distribution retrieval methodology is de-
scribed in Sect. 3, introducing both the microphysical model
and the size distribution retrieval algorithm. The fourth and
fifth sections are dedicated to the validation against size-
resolved PSC measurements and a similar approach using li-
dar measurements performed at ALOMAR. The last section
is devoted to the summary and conclusions.

2 Lidar data

Two validation cases are presented in the result section: both
feature PSC events observed above ALOMAR (69◦ N/16◦ E)
where lidar measurements are performed routinely. The
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ALOMAR Rayleigh/Mie/Raman lidar emits laser pulses at
355, 532 and 1064 nm. The beam is produced by a 30 Hz
repetition rate pulsed Nd-YAG twin laser. The backscat-
tered light is received by 180 cm diameter Cassegrain tele-
scopes with a field-of-view of 180µrad and detected with
photomultipliers tubes in photon-counting mode (von Zahn
et al., 2000). The vibrational Raman at 387 and 607 nm (as-
sociated with the 355 and 532 nm wavelengths respectively)
and the rotational Raman measurements at 529 and 530 nm
are also performed simultaneously. The measurement inte-
gration time is typically 3 min with a vertical resolution of
150 m. Data are acquired with the lidar pointing to the zenith.

3 Methodology of the size distribution estimation

The particle size distribution is retrieved from comparisons
between measured and model-simulated backscatter coeffi-
cients, taking the measurement errors into account. In the
first phase, the model calculates the chemical composition
according to the specific environmental conditions (pressure,
temperature, total HNO3, total H2O) for a range of particle
size distributions. Then the refractive index is determined
from the composition. In the second phase, we generate a
BC look-up table as a function of the particle size distribu-
tion parameters. A Mie scattering module (code from Bohren
and Huffman, 1983) is used to calculate the aerosolBCat dif-
ferent wavelengths (within the visible and near-infrared do-
main), for each model-simulated size distribution and chem-
ical composition. In the third phase, the solution is searched
by comparing the look-up table and the measurements, tak-
ing the errors in the lidar measurements into account. The
three steps are summarized in Fig. 1.

We assume in our case that the stratospheric particle size
distribution can be represented by a lognormal size distribu-
tion (Pinnick et al., 1976; WMO, 2007):

n(r)=
N0

√
2π.r. ln(σ )

× exp

(
−

ln2(r/rm)

2 ln2(σ )

)
(1)

where N0 is the total number of particles per unit volume
and σ the geometrical standard deviation (hereafter called
standard deviation) around the median radiusrm.

3.1 Refractive index modelling

In the first phase, the model calculates the particle composi-
tion, ranging from a binary H2SO4/H2O solution to a ternary
H2SO4/HNO3/H2O (STS) solution (Larsen, 2000; Luo et al.,
1996; Krieger et al., 2000) for every size distribution in the
look-up table. The composition of the condensed phase is
assumed to be in thermodynamic equilibrium with the gas
phase. In order to determine the particle equilibrium com-
position (weight fractions of sulphuric acid, nitric acid and
water), one needs to solve a set of 2 non-linear equations de-
scribing the equality between the partial pressures of HNO3

Fig. 1. The 3 steps of the retrieval methodology.

and H2O just over the surface of the condensed phase and
the partial pressures in the gas phase. The model is initial-
ized with a value of the condensed H2SO4 mixing ratio, the
total (gaseous + condensed) amounts of HNO3 and H2O and
it then redistributes HNO3 and H2O between the gas and the
condensed phases according to the calculated particle com-
position. The iterative procedure of the equilibrium compo-
sition calculation ensures that the gas phase and condensed
HNO3 and H2O is equal to the initial total HNO3 and H2O.
The model then derives the condensed aerosol mass concen-
tration (or aerosol volume concentration) which is compared
to the value of the specified particle size distribution. The
H2SO4 mixing ratio is adjusted iteratively (and so is the com-
position) in order for the calculated aerosol volume density
to match the one of the input size distribution. Finally, the
refractive index is calculated from the equilibrium composi-
tion (Luo et al., 1996). The refractive indices at 355 nm and
1064 nm are assumed to be equal to the refractive indices
at 360 nm and 1000 nm respectively because of the lack of
available data beyond the 360–1000 nm range. Modelling
the composition allows us to account for the rapid variations
of the particle composition, and hence, the refractive index,
around the PSC type Ib temperature threshold (Larsen, 2000;
Carslaw et al., 1997) instead of assuming a constant refrac-
tive index whatever the environmental conditions. In addi-
tion, the retrieval algorithm is only strictly valid for spherical
particles (e.g. liquid ternary solution PSCs). For this type of
PSCs, the absorption part of the refractive index can be ne-
glected in optical scattering calculations (Beyer et al., 1996).

www.atmos-chem-phys.net/8/5435/2008/ Atmos. Chem. Phys., 8, 5435–5448, 2008



5438 J. Jumelet et al.: Statistical estimation of particle size distribution

Fig. 2. Colour ratios at 355 (CR355 nm) and 1064 nm (CR1064 nm)
versusrm (a) andσ (b). Reference values for the non varying pa-
rameters are,σ=1.45(a), rm=0.29µm (b), No=0.1 and 10 cm−3 in
both (a) and (b).

3.2 Backscatter modelling

The particle backscatter coefficient is simulated using Mie
theory. It is strictly valid for spherical particles only.
Consequently, our size distribution algorithm can only be
applied to lidar measurements of spherical particles such
as supercooled sulphuric acid aerosol particles or type Ib
PSC. The model-simulated size backscatter coefficient,βMie
(m−1.sr−1), is expressed as:

βMie,λ=

∫
∞

0
n(r)

dσb

d�
(r, λ, m).dr. (2)

whereλ is the incident wavelength,n(r) is the size distribu-
tion, the number of particles at the radius r between r and
r+dr, m the refractive index and dσb/d� the Mie particle
backscattering differential cross section.

The other optical quantity used in the retrieval algorithm
is the colour ratioCRλ (or CR) which is theBC at the wave-
lengthλ normalised by theBC at the most sensitive wave-
length of the lidar system, 532 nm:

CRλ=
βMie, λ

βMie, 532 nm
. (3)

3.3 Size distribution retrieval methodology

An optical module coupled to a size-resolving aerosol model
is used to calculate the three backscatter coefficients (β355 nm,
β532 nm and β1064 nm) and the two associated colour ratios
(CR355 nm andCR1064 nm) as a function of the size distribu-
tion parameters. In principle, theCR should not depend on
No becauseNo vanishes whenCR are formed. But, in our
size distribution algorithm, that is not the case. In the look-
up table, the refractive index also varies withNo becauseNo,
along withσ andrm, determines the aerosol volume concen-
tration and, hence, the condensed mass of HNO3 and H2O.
As the total HNO3 and H2O is fixed, the partitioning between
gas phase and condensed phase as well as the aerosol compo-
sition depend on aerosol volume concentration. For example,

if No is very small (or large), most of the HNO3 is in the gas-
phase (or condensed phase), and so, the particle equilibrium
composition would correspond to high (or low) partial pres-
sures of gaseous HNO3. As a result, even whenσ and rm
are kept constant, differentNo give different aerosol compo-
sitions, different refractive indices, and hence, differentCR.

The influence ofNo on modelling the refractive index ap-
pears in Fig. 2, which displays sample plots ofCR355 nm
and CR1064 nm. The standard deviation is fixed in Fig. 2a
(CR=fi(rm)σ=1.45) while the mean radius is fixed in Fig. 2.b
(CR=fi(σ )rm=0.3µm). Two sets of curves are plotted. They
correspond toNo being equal to either 0.1 or 10 cm−3. The
reference values ofrm andσ come from the validation case
described in Sect. 4.3. For high aerosol volumes (high val-
ues ofσ or rm) the curves ofCR(rm,σ ) for No=0.1 and for
No=10 cm−3 start to differ, illustrating the influence ofNo on
CR. The non-linearity of the retrieval problem is also high-
lighted in this figure, in that the colour ratios are not in uni-
valent relationship with the size distribution parameters in
Fig. 2.

For the environmental conditions (temperature, pressure,
mixing ratios of total HNO3 and H2O) of each lidar data
point, a look-up table of model-calculatedBCandCRis gen-
erated as a function ofNo, rm andσ . The resolution step is
typically 0.1 cm−3 for No, 0.01µ m for rm and 0.01 forσ .
The influence of the look-up table resolution on the retrieval
is checked and increased till such influence is not noticeable
anymore.

The size distribution retrieval algorithm then searches the
look-up table for the model-simulatedBC (βi,model with
i=355, 532, 1064 nm) andCR (CRj,model with j=355/532,
1064/532) that correspond to the measurements (βi,lidar,
CRj,lidar). As CRalso depend onNo in the look-up table, the
search for the optimal values ofNo, σ andrm is done in one
step by fitting the 5 optical quantities (= 3BC + 2CR). If the
refractive index had been assumed constant,CRwould have
been independent ofNo. We could have first searched forσ

andrm by fitting the 2CRand then derivedNo by fitting the
3BC (as in Blum et al., 2006 and Baumgarten et al., 2007).
This two-step procedure would have been less demanding in
terms of computing time than the simultaneous search ofNo,
rm andσ adopted here.

In order to estimate the errors in the size distribu-
tion retrieval, the lidar measurement errors (1βi, lidar,
1CRj, lidar) are taken into account by searching
the βi and CRj that are within the measurement
intervals (βi, lidar−1βi, lidar, βi, lidar+1βi, lidar) and
(CRj, lidar−1CRj, lidar, CRj, lidar+1CRj, lidar) respectively.
Any (No, rm, σ ) combination of the look-up table whose
associatedβi, modelandCRj, modelbelong to the measurement
intervals is taken as a possible solution. Obviously, the larger
the lidar errors, the wider the pool of possible solutions.
Note that, in our algorithm, the model errors are ignored.
For instance, the size distribution retrieval algorithm does
not account for errors in modelling the particle refractive
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index. In other words, the model is assumed to be perfect.
The additional size distribution retrieval errors originating
from possible model deficiencies are discussed in the results
and conclusion sections.

Several approaches are possible for determining the model
solution (No, rm, σ ). It is possible to simply look for the
best (according to the least-square criterion) match between
model simulations and measurements by minimizing the fol-
lowing scalar function:

J (No, r, σ )=

3∑
i=1

(
βi, model−βi, lidar

)2
1β2

i, lidar

+

2∑
j=1

(
CRj, model−CRj, lidar

)2
1CR2

j, lidar

. (4)

with βi or CRj, model= M (No,σ , rm,λ) whereM is the model
operator.

This type of quadratic function that quantifies the mis-
fit between model and data is variously referred as cost
function, distance function, objective function, or penalty
function in data assimilation (Elbern and Schmidt, 2001).
This simple approach does not even require identifying
the pool of possible model solutions, i.e. the combi-
nations (No,σ , rm) such asXk, lidar−1Xk, lidar<(No,σ ,
rm,λ)<Xk, lidar+1Xk, lidar (with X=BC or CR, andk=1 to
5). The best match model solution is indeed identified inde-
pendently from the statistical properties of the cluster of pos-
sible solutions. This approach gives the most likely solution
when the model is quasi-linear and the errors are Gaussian.

A second approach is to look for the most likely solution
using the statistical properties of the cluster of possible solu-
tions, given the lidar uncertainties. According to estimation
theory, the most likely solution is expected to be found in
the densest part of the solution cluster, around the maximum
of the probability density function (i.e. maximum likelihood
estimation).

The best match solution (i.e. solution corresponding to the
minimization of the model-data misfit) and the most prob-
able solution should be very close if the modelM (No, σ ,
rm) was linear and the errors were Gaussian. However, our
model is highly non-linear. To illustrate the non-linearity
of the model, Fig. 3 presents typical examples ofCR355 nm
evolution as a function ofrm andσ for No=0.01 cm−3 and
the environmental conditions corresponding to the first val-
idation case (see Sect. 4.1). Depending on the value of the
CR355 nm measurement, there are several possible solutions
that can be quite scattered all over therm andσ domain. Fig-
ure 3 clearly indicates that the solutions to a given value of
CR355 nm do not necessarily form a tight cluster in the size
distribution parameter space. This is due to the non-linearity
of the model and hence, to the high sensitivity of the cal-
culatedBC to the input size distribution parameters. In the
same way, the other model-simulated optical properties,BC
or CR1064 nm, can also have highly non-linear dependencies
on the size distribution parameters. As shown by Eq. (1) and
Eq. (2), the only possible linear relationship at first sight is
the dependency ofBC on No. BC have a somewhat expo-
nential dependency onrm andσ but this dependency varies

Fig. 3. Colour ratio at 355 nm plotted versus median radiusrm and
standard deviationσ , calculated from Mie theory.rm ranges from
0.01 to 1µm andσ from 1.01 to 2.No is set to 10−2 cm−3. Re-
fractive index calculations are made at T=186 K, 4.5 ppmv H2O and
10 ppbv HNO3. Altitude is 22.5 km.

in a complex way in the size distribution parameter space.
Whenσ gets close to 1, the particles tend to have their radius
tightly scattered around the median radius. This narrow size
distribution enhances the behaviour of the Mie differential
backscattering cross section as a function of r, and, whenσ

is close to 1, its oscillations drive the backscatter as can be
seen on Fig. 3 (Bohren and Huffman, 1983). The final clus-
ter of possible model solutions is the intersection of 5 differ-
ent solution clusters corresponding to the 5 optical quantities
(=3BC+2CR). The resulting 3-D surface of possible model
solutions can be very convoluted.

Multiple sensitivity tests have shown that, in several cases,
the sole best match approach leads to somewhat unrealistic
values ofNo, rm and σ with, in particular,σ being close
to 1. Indeed, the surface ofJ=f(No, rm, σ ) sometimes ex-
hibits a deep and extremely localised minimum, but the real-
istic solutions are mostly found in a very broad but shallower
minimum. When looking at the cluster of possible model
solutions in these cases, the best match solution (i.e. mini-
mum ofJ=f(No, rm,σ )) is found on the edge or even com-
pletely disconnected from the cloud of possible solutions in
the size distribution parameters space. This is confirmed by
other numerical experiments using model-simulatedBC as
measurements. In this setup, the synthetic measurements are
produced by adding random errors to the model-calculated
BC. The true solution is the set of size distribution parame-
ters taken as input to the model. In several cases, depending
on the amplitude of the added random errors, the best match
solution can be localised in a deep minimum area far away
from the true solution. Therefore, on its own, the best match
criterion guarantees neither unicity nor optimality of the so-
lution because of the high non-linearity of the model.
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In order to look for a model solution in the densest part of
the possible solution cluster, the cluster is filtered based on its
spread. The standard deviationsσNo, σrm , andσ σ on the 3-D
solution cluster are first calculated. Then, any possible so-
lutions outside the±σ=(σNo, σrm , σ σ ) envelope around the
cluster centre are discarded. The coordinates of the cluster
centre are taken as those of the median values ofNo, rm and
σ because the median values are less sensitive to anomalous
solution points than the mean values. Overall, this data fil-
tering ensures removal of most unrealistic possible solutions.
As expected, test simulations indicate that stable model solu-
tions are associated with a large number of possible solutions
within the clusters. Therefore, we also check the number of
possible solutions left in the filtered cluster and proceed to
the next step only when there is a significant fraction of the
look-up table present in the solution cluster (typically one
hundred points). This issue is of course linked to the ampli-
tude of lidarBC errors and to the resolution of the look-up
table.

The model solution is finally searched within the filtered
cluster of possible solutions. The 3-D size of the initial so-
lution cluster and, hence, the filtered cluster are determined
by the amplitude of the lidar errors that are not known accu-
rately. We prefer to use the best match approach (i.e. mini-
mum of the model-measurement, as quantified by the scalar
functionJ ) to determine the final model solution instead of
an average of the solution cluster, because the best match
solution is not sensitive to the size of the solution cluster (ex-
cept when the errors are assumed to be excessively small and
so the realistic model solution may not be found within the
searched domain in some particular cases), whereas the mean
or median values of the cluster can fluctuate with the cluster
size. Overall, the uncertainties on the lidar errors are not crit-
ical for the best match model solution but they do influence
the estimated errors in the retrieved size distribution param-
eters. Indeed, the standard deviations on the filtered cluster
are taken as estimates of the size distribution retrieval errors.
These estimates are possibly lower limits on the retrieval er-
rors because the size of the cluster is reduced by the filtering
and model errors are ignored. Note that the points within the
cluster are not exactly normally distributed. Therefore, we
could have estimated the retrieval error with percentiles that
do not require any assumptions on the shape of the solution
PDF. However, simple tests have shown that the use of the
standard deviation or the 75 percentile does not have a very
significant influence on the final estimation.

If the inverse problem was properly posed, the best match
solution and the cluster centre should be very close. In order
to be consistent with estimation theory, a final and slight ad-
justment is carried out using the lidar error as an adjustable
parameter. Indeed, lidar errors are notoriously difficult to es-
timate (ASAP, 2006). The estimated errors in the measured
BCare uncertain by at least 20%. Therefore, the distance be-
tween the best match solution and the cluster centre (defined
by the median values) in the size distribution parameter space

is minimized by varying theBC errors1βlidar within their
uncertainties. The distance is expressed as a scalar function:

D(1βlidar)=

(
No,bestmatch−No,center

)2
σ 2

No,cluster

+

(
rm,bestmatch−rm,center

)2
σ 2

rm,cluster

+
(σbestmatch−σcenter)

2

σ 2
σ, cluster

. (5)

whereXbest−matchandXcenterare the size distribution param-
eterX of the best match solution and of the cluster centre
(defined as the median value) respectively;σX, cluster is the
standard deviation of the size distribution parameterX on
the solution cluster.

The uncertainties on theBC errors are assumed to be 20%
typically. Therefore, if theBC error is 12.5% for example,
the distanceD is minimized by varying theBCerror between
10% and 15%. The main objective of the whole procedure is
to ensure that the retrieval algorithm produces realistic and
stable model solutions (i.e. size distribution parameters) that
are weakly sensitive to the estimatedBC errors as well as
being consistent with the estimation theory.

4 Evaluation against size-resolved measurements

The first evaluation of the retrieval algorithm is based on
more or less coincident lidar and balloonborne size-resolved
measurements of a stratospheric thick cloud observed above
ALOMAR and described in Deshler et al. (2000). The lidar
measurements provide the input data for the retrieval algo-
rithm and the size-resolved measurements provide the ref-
erence values for an independent evaluation of the retrieved
size distribution.

4.1 PSC Observations

On 23 January 1996 a thick cloud was detected by lidar
above ALOMAR. This cloud was present between 19 and
26 km. The lidar signal was depolarized between 23 and
25 km. The cloud was also probed at about the same time
with an Optical Particle Counter (OPC) instrument that pro-
vided size distribution measurements. European Centre for
Meteorological Weather Forecasts (ECMWF) analyses indi-
cated favourable conditions for PSC formation. A detailed
description of the temporal evolution of the lidar measure-
ments and of the cloud structure can be found in Hansen and
Hoppe (1997). Measurements were carried out at several al-
titudes within the broad cloud layer, both in the depolarizing
and non-depolarizing regions of the cloud. These sets of lidar
and size-resolving measurements appear to be excellent op-
portunities to validate our size distribution retrieval method-
ology. Around 22.5 km, in a non-depolarizing (spherical par-
ticles) region of the cloud, Deshler et al. (2000) identified a
type Ib PSC whose measured size distribution could be fitted
with a unimodal lognormal distribution. This type Ib PSC
represents an ideal case of validation because it fulfils the
conditions of sphericity for the particles and unimodality for
the size distribution. The size-resolved measurements of the
other PSC layers indicated bimodal distributions with some
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being non-depolarizing. In the depolarizing (non-spherical
particles) layers, type Ia or even type II PSC were identi-
fied. To check the influence of the sphericity and unimodal-
ity conditions on the results, we also perform size distribu-
tion retrievals on theses cases where the retrieval system is a
priori expected to perform poorly. One of the aims is to iden-
tify the size distribution parameter whose retrieval is most
affected by the non-respect of these conditions. All the log-
normal parameters of the measured (reference) and retrieved
size distributions are gathered in Table 1.

4.2 Lidar data

Lidar signals are averaged between 17:50 and 18:30 UTC
in order to be coincident with the in situ balloon-borne
size-resolving measurements, as described in Deshler et
al. (2000). It is worth pointing out that, even if the lidar and
OPC measurements were truly coincident, aBCderived from
lidar data averaged over 40 min is not expected to be equiv-
alent to aBC calculated from the corresponding particle size
distribution averaged over the same time interval unless the
particle distribution does not vary temporally. TheBC at
355 and 532 nm are retrieved using the vibrational Raman
N2 scattering detected at 387 and 607 nm respectively. As
the association of elastic and inelastic scattering allows the
determination of the particle extinction, there is no assump-
tion on the value of the lidar ratio (extinction over backscat-
ter) in the inversion of the equation linking theBC and the
lidar signal. The lidar inversion still requires the choice
of a reference altitude at which theBC is supposed to be
known (clear-air assumption) (Ansmann et al., 1990, 1992a,
b). Figure 4 shows the backscatter ratios profiles at 355,
532 and 1064 nm, defined as the total backscatter divided by
the Rayleigh (molecular) contribution. These profiles can be
compared to those obtained in Deshler et al. (2000) who used
the Klett method for the three wavelengths assuming a lin-
ear relation between extinction and backscatter (Klett, 1981,
1985). There is still an excellent agreement between the two
inversion techniques. We estimate the errors in our determi-
nation of the backscatter coefficient to be about 10% at 355
and 532 nm, and 20% at 1064 nm.

4.3 Non-depolarizing unimodal size distribution

The unimodal type Ib PSC was observed at about 22.5 km.
The temperature was about 186 K according to the measure-
ments. This temperature is used here as input to the micro-
physical model. The volume mixing ratios in total HNO3
and H2O required by the model are set to the typical val-
ues of 10 ppbv and 4.5 ppmv respectively. The ranges of
size distribution parameters considered by the retrieval algo-
rithm are as follows: 10−3<No<20 cm−3, 10−3<rm<3µm
and 1.01<σ<2. After applying the retrieval algorithm
to the BC and CR data, we obtainNo=11.4 cm−3 (9%),
rm=0.30µm (5%) andσ=1.44 (2%) with the numbers in

Table 1. Reference and retrieved size distribution parameters on the
PSC case observed on 23 January 1996. On the left part, OPC size
distribution reference values in Deshler et al. (2000). On the right
part, retrieved values in case of liquid (a andb) and solid particles
(c). The associated retrieval errors in the estimated parameters are
bracketed.

Reference values Retrieved values

Mode 1 Mode 2 m imposed

Altitude: 22.45 km Non-depolarizing region (a)

No (cm−3): 7.71 - 11.4 (9%) 6.67 (22%)
rm (µm): 0.29 - 0.30 (5%) 0.32 (6%)
σ : 1.45 − 1.44 (2%) 1.38 (2%)
A (µm2.cm−3): 10.4 - 16.8 (20%) 10.6 (40%)
V (µm3.cm−3): 1.4 - 2.4 (30%) 1.5 (50%)
Altitude: 21.83 km Non-depolarizing region (b)

No (cm−3): 5.63 0.005 7.3 (11%)
rm (µm): 0.4 1.74 0.41 (6%)
σ : 1.26 1.33 1.27 (6%)
A (µm2.cm−3): 12.63 0.22 17.1 (30%)
V (µm3.cm−3): 1.92 0.16 2.7 (40%)
Altitude: 23.98 km Depolarizing region (c)

No (cm−3): 8.23 0.005 9.0 (17%)
rm (µm): 0.26 1.68 0.62 (7%)
σ : 1.39 1.34 1.29 (8%)
A (µm2.cm−3): 8.71 0.21 49.4 (50%)
V (µm3.cm−3): 0.99 0.15 12 (70%)

brackets being the estimated retrieval errors. The re-
trieved values can be compared with the OPC measurements:
No=7.71 cm−3, rm=0.29µm andσ=1.45. Therm andσ val-
ues agree extremely well, around a few percent, which is
within the error bars. In contrast, theNo values differ by
about 50% which is a factor 5 higher than the estimated re-
trieval error inNo (9%). As stated before,BC andCR are
generally less sensitive toNo thanrm andσ . Therefore, the
retrieval ofNo is expected to be less accurate.

From the values ofNo, rm andσ , one can calculate higher
order moments of the size distribution such as the total sur-
face area densityA and volume densityV that are key quan-
tities for heterogeneous chemistry and, hence, ozone loss:

A=No.4π.r2
m.e[2. ln2 σ ] andV =No.

4π

3
.r3

m.e[
9
2 . ln2 σ ]. (6)

For our retrieved size distribution parameters,
A=16.8µm2.cm−3 (20%) and V =2.4µm3.cm−3 (30%).
For the OPC reference measurements,A=10.4µm2.cm−3

and V =1.4µm3.cm−3 with uncertainties of around 30%,
with 20% originating from the OPC measurement errors
and 10% from errors in the refractive index (Deshler et al.,
2000). OurA andV values differ by about 60% from the
reference values, which is almost greater than the total (=
size distribution retrieval+ OPC) errors. AlthoughA andV

are most sensitive torm (power law dependency), the 60%
bias onA and V mostly originates from the bias inNo.
Indeed, the respective 3% and 1% biases onrm andσ only
lead to a 5% error inA andV . It is not totally surprising that
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Fig. 4. Backscatter ratio profiles associated with lidar measure-
ments performed at ALOMAR on 23 January 1996. Lidar signals
are averaged between 17:50 and 18:30 UTC.

BC are less sensitive toNo and hence, thatNo is the most
difficult parameter to retrieve. The Mie scattering kernels
in the spectral range of interest (from 0.385 to 1.02µm)
show that lidar data are most sensitive to particles in the
0.1−1 µm range (Fig. 4.28 in ASAP, 2006). As a result, the
moments that depend on smaller particles (such as theNo

concentration) are less likely to be accurately retrieved.

To check the stability of the solution, the retrieval is per-
formed withBC errors ranging from 5% to 50%. The so-
lution does not change from around 10% to 50% lidar er-
rors. When lidar errors are lower than 10%, another solution
(No=11 cm−3, rm=0.32µm andσ=1.39) is identified. How-
ever, this solution has to be discarded because of the very
low number of points present in the solution cluster. Be-
sides, lidar errors are unlikely to be lower than 10%. An-
other test is carried out with a look-up table that does not
cover the range of the reference OPC values. As expected,
no solutions are identified. Overall, it can be concluded that
the algorithm appears to perform well, especially when re-
trieving the size distribution parametersrm and σ of uni-
modal liquid PSC distributions. The overall errors on the
integrated quantitiesA and V as well as theNo parame-
ter appear to be higher than errors derived theoretically for
methodologies using regularization techniques (Müller et al.,
1999; B̈ockmann and Kirsche, 2006). Such studies use ex-
tinction coefficients on the top of backscattering coefficients
at tropospheric altitudes. In our case, the extinction coeffi-
cient is not retrieved with sufficient accuracy at stratospheric
altitudes to be used as an additional constraint in the retrieval
procedure, thus leading to higher errors on the final estima-

tion. The total number of particlesNo still appears to be the
most difficult parameter to retrieve accurately (Müller et al.,
1999; B̈ockmann and Kirsche, 2006).

4.4 Assumptions of unimodality and sphericity

4.4.1 Bimodal size distribution

A non-depolarizing PSC layer with a bimodal size distri-
bution was detected around 21.8 km (Deshler et al., 2000).
The values of the size distribution parameters of the two
modes are given in Table 1b. Using them as inputs to
the optical model, the simulatedBC of the small particle
mode is found to be more than a hundred times higher
than the BC of the large particle mode at all the con-
sidered wavelengths. The retrieval algorithm is applied
at the 21.8 km altitude for the corresponding pressure and
temperature and for the same conditions as above (to-
tal HNO3 and H2O, considered ranges of size distribu-
tion parameters and lidar errors). The retrieved values are
No=7.3 cm−3 (11%), rm=0.41µm (6%) andσ=1.27 (6%),
with A=17.1µm2.cm−3 (30%) andV =2.7µm3.cm−3 (40%).
As expected, the retrieved parameters are found to reflect
the optically dominant mode of the small particles. They
can be compared to the OPC-derived reference parameters
of the small particles mode (No=5.63 cm−3, rm=0.4µm and
σ=1.26 withA=12.6µm2.cm−3 andV =1.9µm3.cm−3). As
for the previous case featuring an unimodal distribution, the
agreement with the reference values is excellent forrm and
σ and the largest discrepancy is found forNo. The bias in
No results in retrieved values ofA andV that differ from the
reference values by about 40%. Again, the retrieval is found
to be stable regarding the specified lidar errors. The results
show that the algorithm can be applied to multimodal size
distributions, but that the retrieved size distribution parame-
ters are only relevant to the optically dominant mode.

4.4.2 Spherical particles

A depolarizing PSC layer was observed around 24 km. Its
size distribution was bimodal. The exact type of this solid
PSC, or at least, PSC containing a mode of solid particles,
has not been clearly defined. Based on morphology and
colour index, Hansen and Hoppe (1997) concluded that it
was a type II (ice) PSC whereas Deshler et al. (2000) anal-
ysed the measured size distribution and the associated par-
ticle volume to arrive at a type Ia (Nitric Acid Trihydate)
PSC. As for the case of the liquid bimodal distribution pre-
viously considered, optical model calculations indicate that
the optical signal of the small particle mode is largely dom-
inant over the signal of the large particle mode. As solid
PSC are composed of non-spherical particles, this case is
used to test the influence of the presence of non-spherical
particles on the quality of the retrieval. The retrieved
values areNo=9.0 cm−3, rm=0.62µm and σ=1.29 with
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A≈49µm2.cm−3 andV ≈12µm2.cm−3. The OPC-derived
parameters for the small particle mode wereNo=8.2 cm−3,
rm=0.26µm and σ=1.39 with A≈9.0µm2.cm−3 and
V ≈1.0µm3.cm−3. In contrast to the previous results, the
agreement is very poor forrm andσ but it is satisfactory for
No. The very large discrepancies onrm andσ lead to re-
trieved values ofA andV differing from the OPC-derived
values by a factor 5–10. Note that the refractive index value
was calculated for STS particles, whose value is close to the
NAT value. We also performed a retrieval forcing the re-
fractive index to be equal to the PSC type II refractive index
value as inferred in Scarchilli et al. (2005). But the overall
results do not change very significantly. The size distribution
was found to beNo=7 cm−3, rm=0.53µm andσ=1.75 with
A≈46µm2.cm−3 andV ≈18µm2.cm−3. Accounting for a
more accurate refractive index does not improve the retrieval
in this case.

As expected, using Mie theory for non-spherical particles
results in erroneous retrieved parameters. For the retrieval of
solid PSC size distributions, it is necessary to replace the Mie
optical model by a T-matrix optical model in the algorithm
(Mishchenko and Travis, 1998), possibly making the particle
asphericity (for example the aspect ratio) one of the control
variables along withNo, rm andσ .

4.5 Refractive index

An important issue in the retrieval is connected to the mod-
elling of the refractive indexm. The backscatter coefficient
is actually most sensitive tom, but its possible range of
values is relatively limited (1.3–1.6) (Deshler et al., 2000;
Luo et al., 1996; Scarchilli et al., 2005). For the case of
the non-depolarizing unimodal distribution, the STS equilib-
rium composition was calculated for an assumed 4.5 ppmv
H2O and 10 ppbv HNO3 giving a refractive index of 1.45 at
355 nm and reducing to 1.43 at 1064 nm (Luo et al., 1996).
Deshler et al. (2000) inferred anm value of 1.47±0.03 for the
same PSC from a comparison between scattering and size-
resolved aerosol concentration measurements. They also
concluded that this value was higher than expected on the
basis of laboratory experiments, measurements in Antarc-
tica and theory. In order to estimate the impact of thism

uncertainty on the results, another retrieval is performed on
the same case, but with the refractive index calculation re-
placed by settingm to 1.48, 1.46 and 1.51 at 355, 532 and
1064 nm wavelengths respectively, as provided in Deshler et
al. (2000). The retrieved parameters areNo=6.7 cm−3 (22%),
rm=0.32µm (6%) andσ=1.38 (2%) withA=10.6µm2.cm−3

(40%) andV =1.5µm3.cm−3 (50%). Let us recall that the
OPC reference values wereNo=7.71 cm−3, rm=0.29µm and
σ=1.45 withA=10.4µm2.cm−3 andV =1.4µm3.cm−3. The
quality of the retrieval is slightly degraded forrm andσ , but it
improves drastically forNo. The improvement is even more
noticeable forA andV ; the retrieved values are now within
1% and 7% respectively of the reference values instead of

Fig. 5. Plots of the refractive index versus water vapour mixing ratio
(a) and temperature(b). Wavelength is 532 nm, size distribution is
as in Table 1a. Water vapour is 4.5 ppmv in plot(a) and temperature
is 186 K in plot(b).

the 60% difference initially obtained when the refractive in-
dex was calculated by the model (Sect. 4.3). Although the
change inm seems to be very marginal (about 0.03 or 2%),
it has a profound effect on the retrieval results, confirming
by the way that the backscatter coefficient is highly sensitive
to m. The results obtained by bypassing the modelling of
the composition and refractive index suggest that most of the
bias in the initial retrieval was due to errors inm and not to
problems in the Monte Carlo approach. This further validates
our retrieval methodology.

If the refractive index inferred by Deshler et al. (2000) is
taken as a reference value, the bias inm could originate from
either errors in the relationship linkingm to the particle com-
position (Luo et al., 1996) or uncertainties in modelling the
composition. The input variables are the temperature, pres-
sure and total HNO3 and H2O mixing ratios. The tempera-
ture is taken from in situ measurements and therefore should
not carry a large uncertainty. The volume mixing ratio of
total HNO3 and H2O were set to typical values (10 ppbv
HNO3 and 4.5 ppmv H2O). If ice clouds had occurred prior
to the lidar measurements, the water vapour content could
have decreased significantly. Measurements at Sodankylä on
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Fig. 6. Cost function in the (rm, σ ) space for the size distribution
retrieved in Sect. 5. Associated values ofNo are not displayed.
The purely best match solution is found within the encircled area.
Taking lidar errors into account, the densest part of the solution
cluster is found to be within the squared area.

23 January at 00:00 UTC indicated that H2O dropped under
3 ppmv between 22 and 24 km (Vömel et al., 1997). There-
fore, lower H2O could have been considered. An additional
retrieval is performed with 3 ppmv of total H2O. The results
are very close to those presented in Sect. 4.3. The effect of
H2O and temperature uncertainties on the model-calculated
refractive index is further illustrated in Fig. 5. Size distribu-
tion parameters and altitude are set to the reference values of
the liquid unimodal distribution given in Table 1. The curves
show that the uncertainties on the temperature and H2O can
account for, at best, a 5.10−3 change inm which is largely in-
sufficient to explain the 0.03 discrepancy with the refractive
index derived by Deshler et al. (2000). It is difficult for us to
pinpoint the exact reasons for the discrepancy on this partic-
ular case because of several possible sources of biases, rang-
ing from the lack of spatio-temporal coincidence between the
lidar and size-resolving measurements, errors in the compo-
sition model itself (for example, the assumption of thermo-
dynamical equilibrium) or errors in the relationship between
composition andm (Luo et al., 1996; Larsen et al., 2000).
In addition, the refractive indices of PSC do not appear to
be known with an accuracy better than 0.03 (Scarchilli et al.,
2005).

5 Evaluation against a simplified estimation methodol-
ogy

Our results are then compared to values retrieved with an-
other approach that is similar but does not consider the ef-
fect of the non-linearity of the model on the likelihood of
the solution (Blum et al., 2006). The test case is a liquid
PSC observed over northern Scandinavia on 5 January 2005.

Blum et al. (2006) and first searched forσ and rm by fit-
ting the 2CRand then derivedNo by fitting the 3BC. They
did not consider the errors in the lidar measurements and re-
trieved the parameters by simply looking for the minimum
of the misfit between model simulations and measurements
(i.e. best match solution). The size distributions were found
to be very narrow throughout the 5 km thick cloud. Retrieved
values ofrm andσ were more or less constant at 0.3µm and
1.04 respectively whereasNo varied between 2 and 20 cm−3.
We processed the lidar signal using vibrational Raman de-
tection for determining theBC and rotational Raman detec-
tion at 529 and 530 nm to get the in situ temperature using
the Rotational Raman Technique (Cooney and Pina, 1976;
Nedeljkovic et al., 1993). The determination of a simulta-
neous and collocated temperature profile improved the ac-
curacy of both theBC and the chemical composition mod-
elling. The volume mixing ratios of total HNO3 and H2O
are set to the typical values of 10 ppbv and 4.5 ppmv respec-
tively. Lidar backscatter errors are increased to 20% at 355
and 532 nm to account for differences in the inversion pro-
cedure with theBC retrieval of Blum et al. (2006). The full
retrieval procedure givesNo=16 cm−3 (20%), rm=0.26µm
(7%) andσ=1.27 (5%) in the middle of the PSC layer, at
21 km. The difference with the results of Blum et al. for the
σ value is well beyond any possible retrieval errors. When
the measurement errors are ignored (i.e. skipping the cluster
filtering and statistical error analysis), our retrieval becomes
a search for the best match solution only. This simplified
version of our retrieval algorithm is then applied to the same
lidar data, but the cluster size is still used to estimate the re-
trieval errors. The retrieved parameters becomeNo=9 cm−3

(47%), rm=0.34µm (18%) andσ=1.04 (12%) which is in
excellent agreement with the results of Blum et al. (2006).

The results clearly illustrate the importance of the lidar
errors and of the model non-linearity in the choice of the
best estimator. The best match solution is found to be out-
side the±σ boundary of the initial solution cluster. It corre-
sponds to a very localised and deep minimum in the surface
of the model-data misfit function (see Fig. 6). But the high-
est density of possible solutions (when lidar errors are ac-
counted for) is found in a very broad but shallower minimum
in that case. The advantage of the filtering can be further
justified by performing a retrieval in which the backscatter
at 532 nm is substantially biased on purpose (i.e. increasing
BC532 nm by 20%). To be consistent, the error inBC532 nm
is also increased by 20%. The retrieval is performed with
the biasedBC532 nm and the associated biasedCR355 nm and
CR1064 nmwhile BC355 nmandBC1064 nmremain unchanged.
The retrieved parameters for the purely best match solution
(no cluster filtering) areNo=2.9 cm−3 (150%),rm=0.51µm
(15%) andσ=1.04 (10%) whereas the full retrieval (includ-
ing cluster filtering) givesNo=11.5 cm−3 (20%), rm=0.31
µm (7%) andσ=1.22 (5%). The different results of this
test are summarized in Table 2. The no-filtering retrieval
givesNo and rm values for the artificially biasedBC532 nm
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Table 2. Reference and retrieved size distribution parameters on the PSC case observed on 5 January 2005. Reference values come from
Blum et al. (2006). The table gives the size distributions retrieved with (full algorithm) and without (best match algorithm) the cluster filtering
step. Errors in the retrieved parameters are bracketed.

No (cm−3) rm (µm) σ

Reference size distribution
5 January 2005 (Blum et al., 2006) 2–20 0.3 1.04

Size distribution retrieval

Best match approach: 9 (47%) 0.34 (18%) 1.04 (12%)
Statistical filtering: 16 (20%) 0.26 (7%) 1.27 (5%)

Size distribution retrieval (BC532 biased)

Best match approach: 3 (150%) 0.51 (15%) 1.04 (10%)
Statistical filtering: 11.5 (20%) 0.31 (7%) 1.22 (5%)

that are completely different, well beyond the retrieval error
bars, from those produced with the unbiasedBC532 nm. In
contrast, taking into account the retrieval error bars, the re-
sults of the full retrieval with the artificially biasedBC532 nm
are fully consistent with the full retrieval with the unbiased
BC532 nm. Our retrieval algorithm shows less sensitivity to
the specified lidar errors and a much greater convergence and
stability when the statistical filtering is applied.

6 Summary and conclusions

This paper introduces a particle size distribution retrieval
method developed to take advantage of the numerous 3-
wavelength lidar setups. It is based on comparing measured
and model-simulated lidar backscatter coefficients. The re-
trieval algorithm minimizes a cost function of the misfit be-
tween measurements and model simulations with the control
variables being the parameters of the PSC size distribution.
In similar approaches, the estimator is often chosen as the
sole “best match” estimator (i.e. best estimation correspond-
ing to the best fit between modelled and measured backscat-
ter coefficients). The errors in the lidar backscatter coeffi-
cients and associated colour ratios are rarely used as input
parameters in the retrieval procedure. This may be critical
in that the retrieval problem is highly non linear, and, on its
own, the best match criterion guarantees neither unicity nor
optimality of the solution. Our approach looks for the most
likely estimation, using the statistical properties of the so-
lution cluster given the lidar uncertainties. This solution is
expected to be found in the densest part of the solution clus-
ter, around the maximum of the probability density function.
With our retrieval procedure, we aim at producing realistic
and stable estimators of the size distribution parameters that
are weakly sensitive to the specified backscatter coefficient
errors that are difficult to estimate accurately.

We use a microphysical model to calculate the refractive
index from the particle composition, taking into account sul-

phuric acid aerosol (binary H2SO4/H2O solution) and liquid
type Ib PSC particles (ternary STS solution). We then gener-
ate a look-up table of backscatter coefficients as a function of
the particle size distribution parameters. Modelling the com-
position allows us to account for the rapid variation of the
particle composition, and hence, the refractive index around
the PSC type Ib temperature threshold. This refractive index
modelling requires the local temperature to be known accu-
rately because the temperature remains the key parameter re-
garding PSC formation.

To be able to resolve the inverse problem from measure-
ments at only three wavelengths, the size distribution is as-
sumed to be unimodal. The particles are also assumed to be
spherical, due to the use of Mie theory in the optical mod-
elling. The model errors are ignored. Our methodology
was described and validations were performed against size-
resolved OPC measurements and against a similar approach.
The first validation case is a PSC event observed above ALO-
MAR on 23 January 1996. OPC size distribution measure-
ments performed by Deshler et al. (2000) on this PSC pro-
vided the reference validation dataset. Due to photo-counting
statistics, calculations from OPC measurements suffer from
an error of about 20%.

In regions where the criteria of unimodality and sphericity
are fulfilled, the parameters of size distribution of PSC type
Ib particles are mostly correctly retrieved, with a respective
3% and 1% error in the median radius (rm) and standard de-
viation (σ ) (see Table 1a). The total number of particlesNo

is found to be the most difficult parameter to retrieve accu-
rately, with an error of around 50%. In addition, we ran our
retrieval algorithm at other altitudes, where non-depolarizing
(spherical particles) bimodal size distributions are observed,
to check the influence of the assumption of unimodality.
When retrieving the size distribution of this bimodal parti-
cle population, the retrieved parameters mainly correspond
to the particle mode that dominates the lidar backscatter sig-
nal (see Table 1b). Overall, the results appear to be satisfying
for spherical particles.
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When considering the depolarizing region of the PSC, as
expected, the retrieved parameters strongly differ from the
OPC reference values. It is clear that the assumption of
spherical particles appears to be critical (see Table 1c). Ac-
counting for the particle asphericity in the optical model
could allow our algorithm to be applied to solid particles
(PSC type Ia or type II).

Model errors are not accounted for in our retrieval algo-
rithm. However, the refractive index is a critical parameter in
the calculation of the aerosol optical properties. The model-
calculated refractive index of liquid particles in the case ob-
served in 1996 was found to be 0.03 lower than the one in-
ferred in Deshler et al. (2000) at the same altitudes. Using
this inferred refractive index value in the optical model, the
retrieved parameters are found to be in excellent agreement
with the OPC measurements, with both the surface area den-
sity and aerosol volume carrying less than 10% error as com-
pared to the reference values. This suggests that most of the
errors in the retrieval originate from uncertainties on the re-
fractive index rather than errors in the retrieval methodology.
Note that our estimation of the retrieval errors does not take
into account the errors involved in the optical modelling such
as errors in the chemical composition required in refractive
index calculations or errors in the scattering theory.

Our results are then compared to values retrieved with an-
other approach that is similar but does not consider the ef-
fect of the non-linearity of the model on the likelihood of
the solution: Blum et al. (2006) retrieved the size distribu-
tion a liquid PSC observed over northern Scandinavia on
5 January 2005 using comparison between measured and
model-simulated colour ratios, the solution being the best
match. We performed retrieval tests with and without the
cluster filtering approach on the PSC case described in Blum
et al. (2006). An excellent agreement is found between their
values and values retrieved with our algorithm without any
statistical filtering of the solution cluster. However, the value
of the geometrical standard deviation appears to be unlikely,
being very close to 1 (σ≈1.04). When the full retrieval algo-
rithm is applied (statistical filtering), our results are found
to be significantly different with a more realistic value of
the standard deviation (σ≈1.27). Additional tests were per-
formed with synthetic lidar measurements generated a priori
with the optical model using specific values of size distri-
bution parameters. These synthetic measurements are then
used as inputs to the retrieval algorithm. Even with a 20%
artificial bias on one of the backscatter coefficients, the full
algorithm is able to retrieve the original size distribution pa-
rameters with a reasonable accuracy. Our full retrieval pro-
cedure does not appear to be very sensitive to the specified
lidar errors. Overall, our statistical approach produces reli-
able estimates of liquid particle size distributions from only
three lidar backscatter coefficients.

Edited by: G. Vaughan
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