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Abstract. A method for estimating the stratospheric particle solid particles drive the backscatter coefficient. A small bias
size distribution from multiwavelength lidar measurementsis identified in modelling the refractive index when compared
is presented. It is based on matching measured and modete previous works that inferred PSC type Ib refractive in-
simulated backscatter coefficients. The lidar backscatter codices. The accuracy of the size distribution retrieval is im-
efficients measured at the three commonly used wavelengthgroved when the refractive index is set to the value inferred
355, 532 and 1064 nm are compared to a precomputed lookn the reference paper.
up table of model-calculated values. The optical model as- Our results are then compared to values retrieved with an-
sumes that particles are spherical and that their size distribuether similar method that does not account for the effect of
tion is unimodal. This inverse problem is not trivial because the measurements errors and the non-linearity of the optical
the optical model is highly non-linear with a strong sensi- model on the likelihood of the solution. The case considered
tivity to the size distribution parameters in some cases. Thes a liquid PSC observed over northern Scandinavia on Jan-
errors in the lidar backscatter coefficients are explicitly takenuary 2005. An excellent agreement is found between the two
into account in the estimation. The method takes advantagenethods when our algorithm is applied without any statisti-
of the statistical properties of the possible solution cluster tocal filtering of the solution cluster. However, the solution for
identify the most probable size distribution parameters. Inthe geometrical standard deviation appears to be rather un-
order to discard model-simulated outliers resulting from thelikely with a value close to unitye(~1.04). When our algo-
strong non-linearity of the model, solutions farther than onerithm is applied with solution filtering, a more realistic value
standard deviation of the median values of the solution clus-of the standard deviatiow ¢1.27) is found. This highlights
ter are filtered out, because the most probable solution is exthe importance of taking into account the non linearity of the
pected to be in the densest part of the cluster. Within the fil-model together with the lidar errors, when estimating particle
tered solution cluster, the estimation algorithm minimizes asize distribution parameters from lidar measurements.
cost function of the misfit between measurements and model
simulations.

Two validation cases are presented on Polar Stratospheri¢ |ntroduction
Cloud (PSC) events detected above the ALOMAR obser-
vatory (69 N — Norway). A first validation is performed Stratospheric particles play an important role in atmospheric
against optical particle counter measurements carried out ighemistry (WMO, 2007) and, in the case of large volcanic
January 1996. In non-depolarizing regions of the cloud (i.e.eruption, in the earth radiative budget (Robock, 2005). For
spherical particles), the parameters of an unimodal size disexample, Polar Stratospheric Clouds (PSC) are a key ele-
tribution and those of the optically dominant mode of a bi- ment in polar ozone depletion by providing the surfaces for
modal size distribution are quite successfully retrieved, es-chlorine activation through heterogeneous chemistry (Peter,
pecially for the median radius and the geometrical standard.997; Charlson and Heintzenberg, 1995). Characterizing and
deviation. As expected, the algorithm performs poorly whenunderstanding stratospheric particles remains a major sci-
entific issue. The most important characteristics of strato-
spheric particles are their size distribution, shape and com-
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gravitational sedimentation (ASAP, 2006). But, very few It is worth pointing out that the need to find a physical
measurements give access to the full size distribution ofsolution has led to added constraints on the form or prop-
stratospheric particles. They are mostly balloonborne in-erties of the solution. An example of such a constraint is
situ measurements (Hofmann and Rosen, 1980; Hofmanrthe smoothness of the solution for vertical profile retrievals
1990; Deshler et al., 2003) and remain very rare. Re-in regularization techniques (Tikhonov and Arsenin, 1977;
trievals of stratospheric particles size distribution have beerMiller et al., 1999, 2000; Tarantola, 2005). Regulariza-
performed using aerosol extinctions from satellite measuretion methods account for the lidar errors in the retrieval pro-
ments at multiple wavelengths, for instance using SAGEcess when setting the regularization parameter choice rules
(Stratospheric Aerosol and Gas Experiment) and SAGE II(Muller etal., 1999). An accurate retrieval also often requires
data (McCormick et al., 1979). Here, we focus our at- numerous optical quantities (backscatter and/or extinction
tention on aerosol backscatter coefficients from lidar datacoefficients) at different wavelengths. With enough con-
Lidar measurements have been used to detect stratosphemstraints, regularization techniques could also enable the de-
particles since the early 1960s (Junge et al., 1961; Fioccdermination of the refractive index (Veselovskii et al., 2004).
and Smullins, 1963). They have been used as a proxy for In the stratosphere, the particle extinction coefficient is
the stratospheric aerosol loading (David et al., 1997; ASAPmeasured with a limited accuracy, because very few pho-
2006). tons are detected by the lidar at stratospheric altitudes. In

Direct determination of the particle size distribution from addition, most of the best-equipped lidar stations only mon-
uniwavelength lidar measurements is theoretically precludedtor the stratosphere at three wavelengths, typically at 355,
because of a lack of constraints iiMer and Quenzel, 1985). 532 and 1064 nm. Because of these two limitations, the
However, there have been attempts to characterize partiregularization technique is not necessarily the most suited
cle size distribution from multiwavelength Raman lidar data approach for retrieving stratospheric particle size distribu-
(Muller etal., 1998; Veselovskii et al., 2002, 2005). This typ- tions from lidar data. In this paper, we explore an alter-
ical inverse problem can be presented in the following way:native method based on the comparison between measured
given a set of lidar observations and optical modelling of theand model-simulated Backscatter Coefficief8€), using a
observations, how can the most probable aerosol size distriMonte Carlo approach. The formulation of the method is in-
bution be estimated? This problem is often addressed by aspired by the works of Beyerle et al. (1994) and Mehrtens et
suming model linearity and normally distributed errors. Most al. (1999). The retrieval algorithm minimizes a cost function
retrieval methods are only based on the least square criteaf the misfit between measurements and model simulations
rion (i.e. minimal discrepancy between measured and modelwith the control variables being the parameters of the PSC
simulated quantities, variance weighted by the errors). Notesize distribution. The errors in the measurements are explic-
that, in some cases, the criterion is used without even considitly taken into account in the search for a solution. A cluster-
ering observation errors. This least-square criterion shoulthased filtering of the solution pool ensures both stability and
lead to the maximum likelihood estimate and to a minimum reliable error estimation. The refractive index is determined
variance for the analysis error (error in the estimation) if all from the particle composition calculated by the microphys-
the errors are Gaussian, unbiased and the model quasi-line&ral model, taking into account both sulphuric acid aerosols
(Lahoz et al., 2007). and liquid type Ib PSC patrticles.

In our case, the model is highly non linear (see Sect. 3.3). The paper is organized as follow. As the method is
It is very sensitive to the size distributions parameters inapplied to the multiwavelength lidar measurements per-
some cases, and, as a consequence, the least square estifadmed at the Arctic Lidar Observatory for Middle Atmo-
tor may not always give the most probable solution dependsphere Research (ALOMAR-88-Norway), the setup of
ing on the magnitude of the observation errors. In addition,the Rayleigh/Mie/Raman (RMR) lidar is briefly presented in
even if the errors in the observables were to be normallySect. 2. The size distribution retrieval methodology is de-
distributed, the non linearity of the model would result in scribed in Sect. 3, introducing both the microphysical model
a Probability Density Function (PDF) of the solution that is and the size distribution retrieval algorithm. The fourth and
not necessarily Gaussian, meaning that the PDF cannot bifth sections are dedicated to the validation against size-
described by its first and second moment. Therefore, the enresolved PSC measurements and a similar approach using li-
tire shape of the solution PDF has to be considered. dar measurements performed at ALOMAR. The last section

The best match estimator, identified as the minimal differ-is devoted to the summary and conclusions.
ence between measured and modelled quantities in the least
square sense, is usually the most probable solution when er-
rors in the observables are negligible and the model quasi2 Lidar data
linear. In our case, errors in the lidar retrieved backscatter
coefficient are not at all negligible, and so it is important to Two validation cases are presented in the result section: both
check whether the best match solution is the most probabléeature PSC events observed above ALOMAR (B2L6° E)
solution. where lidar measurements are performed routinely. The
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ALOMAR Rayleigh/Mie/Raman lidar emits laser pulses at
355, 532 and 1064 nm. The beam is produced by a 30 Hz
repetition rate pulsed Nd-YAG twin laser. The backscat-
tered light is received by 180 cm diameter Cassegrain tele-

1. Building up the leok-up table

Size distribution range and
resolution, Temperature, Pressure,
Ho0 and HNO; total mixing ratios

2. Building up the solution chaster

Ladar data: par. Pz and iz
AP, APyz and APja,

scopes with a field-of-view of 180@rad and detected with

photomultipliers tubes in photon-counting mode (von Zahn
et al., 2000). The vibrational Raman at 387 and 607 nm (as-||
sociated with the 355 and 532 nm wavelengths respectively)
and the rotational Raman measurements at 529 and 530 nr|
are also performed simultaneously. The measurement inte:
gration time is typically 3 min with a vertical resolution of

150 m. Data are acquired with the lidar pointing to the zenith.
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The particle size distribution is retrieved from comparisons
between measured and model-simulated backscatter coeffi
cients, taking the measurement errors into account. In the
first phase, the model calculates the chemical composition
according to the specific environmental conditions (pressure,
temperature, total HN§) total H,O) for a range of particle
size distributions. Then the refractive index is determined
from the composition. In the second phase, we generate a

BC look-up table as a function of the particle size distribu- Fi9- 1. The 3 steps of the retrieval methodology.

tion parameters. A Mie scattering module (code from Bohren

and Huffman, 1983) is used to calculate the aerBsbat dif- and HO just over the surface of the condensed phase and

“Cluster spread 1s a first order
“~ -t~ error on the estimate

N,

3D median of
the cluster
Solution cluster

N

Filtered solution cluster

n(r)= 1)

ferent wavelengths (within the visible and near-infrared do-the partial pressures in the gas phase. The model is initial-
main), for each model-simulated size distribution and chem-ized with a value of the condensed${; mixing ratio, the
ical composition. In the third phase, the solution is searchedotal (gaseous + condensed) amounts of HN@d HO and
by comparing the look-up table and the measurements, takit then redistributes HN@and HO between the gas and the
ing the errors in the lidar measurements into account. The&ondensed phases according to the calculated particle com-
three steps are summarized in Fig. 1. position. The iterative procedure of the equilibrium compo-
We assume in our case that the stratospheric particle sizgition calculation ensures that the gas phase and condensed
distribution can be represented by a lognormal size distribuHNOz and HO is equal to the initial total HN®and HO.
tion (Pinnick et al., 1976; WMO, 2007): The model then derives the condensed aerosol mass concen-
) tration (or aerosol volume concentration) which is compared
No exp _In*Gr/rm) to the value of the specified particle size distribution. The
V27 .r.In(o) 21In%(0) H>SO4 mixing ratio is adjusted iteratively (and so is the com-
) ) ) position) in order for the calculated aerosol volume density
where I is the total number of particles per unit volume 4 match the one of the input size distribution. Finally, the
ando the geometrical standard deviation (hereafter calledefractive index is calculated from the equilibrium composi-
standard deviation) around the median radijis tion (Luo et al., 1996). The refractive indices at 355 nm and
3.1 Refractive index modelling 1064 nm are assumed to be eq.ual to the refractive indices
' at 360 nm and 1000 nm respectively because of the lack of
In the first phase, the model calculates the particle composi@\’a""’lble dgtg beyond the 360-1000 nm range. qugllmg
tion, ranging from a binary p504/H,0 solution to a ternary the compo_smon aIIows_ us to account for the rapid \_/ar|§1t|ons
H,SQ/HNOg/H,0 (STS) solution (Larsen, 2000; Luo et al., of the particle composition, and hence, the refractive index,
1996; Krieger et al., 2000) for every size distribution in the around the PSC type I,b temperature thrgshold (Larsen, 2000;
look-up table. The composition of the condensed phase i .ars_law etal., 1997) msteaq of assuming a constant fe““’?“"
assumed to be in thermodynamic equilibrium with the gast!ve index w_hatever th_e en\./lronment.al conqmons. In gdd|-
phase. In order to determine the particle equilibrium com-t'on’_ the retrlevgl a_lgorlthm is onl){ strictly valid for s_pherlcal
position (weight fractions of sulphuric acid, nitric acid and particles (e.g. I'qu'(_j ternary solution PS(_:S)'_ For this type of
water), one needs to solve a set of 2 non-linear equations dd-SCs, the ab;orptlon part of the refractlve index can be ne-
scribing the equality between the partial pressures of HINO glected in optical scattering calculations (Beyer et al., 1996).
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S . ol s T if N, is very small (or large), most of the HNGs i_n the gas-

25 \N0=0.1cm" — 251 phase (or condensed phase), and so, the particle equilibrium

204 CRessm\ 47 | 20 |t No=0.dem N =1 gom composition would correspond to high (or low) partial pres-
5] &5 ] =4 sures of gaseous H_I\gO As a _resul_t, even whea andry,

‘o ) ‘o e are kept constant, dlffe_rem(, give different aerOS(_)I compo-

s N,-01em® No=idom’, o5 ) o i il sitions, different refractive indices, and hence, diffet@Rt

1 |CRsn 0'0 i The influence oV, on modelling the refractive index ap-

pears in Fig. 2, which displays sample plots @Rss55nm
and CRyos4nm The standard deviation is fixed in Fig. 2a
(CR=f;(rm)=1.45) While the mean radius is fixed in Fig. 2.b
(CR=f;(0),,,=0.3um). Two sets of curves are plotted. They
correspond taV, being equal to either 0.1 or 10 cth The
reference values of,, ando come from the validation case
described in Sect. 4.3. For high aerosol volumes (high val-
ues ofe or r,) the curves ofCR(r,,,0) for N,=0.1 and for
3.2 Backscatter modelling N,=10cnt 3 start to differ, illustrating the influence of, on

CR The non-linearity of the retrieval problem is also high-
The particle backscatter coefficient is simulated using Mielighted in this figure, in that the colour ratios are not in uni-
theory. It is strictly valid for spherical particles only. valent relationship with the size distribution parameters in
Consequently, our size distribution algorithm can only beFig. 2.
applied to lidar measurements of spherical particles such For the environmental conditions (temperature, pressure,
as supercooled sulphuric acid aerosol particles or type Iinixing ratios of total HN@ and HO) of each lidar data

PSC. The model-simulated size backscatter coefficng, ~ POINt, alook-up table of model-calculatB€ andCRis gen-
(m~1.sr1), is expressed as: erated as a function d@¥,, r,, ando. The resolution step is

typically 0.1 cnv2 for N, 0.01 . m for r,, and 0.01 foro.

1,E-02 1,E-01 1,E+00 1,0 1,2 14 16 1,8 2,0
T (M) c

Fig. 2. Colour ratios at 355¢R355nm and 1064 nm CRy 064 nm
versusr,, (a) ando (b). Reference values for the non varying pa-
rameters arey=1.45(a), r,,=0.29um (b), N,=0.1 and 10 cm3in
both (a) and (b).

o dop The influence of the look-up table resolution on the retrieval
'B’V”e’*:/O n(r)d_gz(r’ A, m).dr. (2) is checked and increased till such influence is not noticeable
anymore.
wherel is the incident wavelengtt(r) is the size distribu- The size distribution retrieval algorithm then searches the

tion, the number of particles at the radius r between r andook-up table for the model-simulateBC (Bi model With
r+dr, m the refractive index andogh/d2 the Mie particle =355, 532, 1064 nm) an€R (CR,model With j=355/532,
backscattering differential cross section. 1064/532) that correspond to the measuremefit$d4r,
The other optical quantity used in the retrieval algorithm CR jigar). As CRalso depend oW, in the look-up table, the
is the colour raticCR, (or CR) which is theBC at the wave-  search for the optimal values of,, ¢ andr,, is done in one
length 2 normalised by thé8C at the most sensitive wave- step by fitting the 5 optical quantities (8 + 2CR). If the

length of the lidar system, 532 nm: refractive index had been assumed const@rRyould have
_ been independent @¥,. We could have first searched for
CszﬁM'—e’k. (3) andr,, by fitting the 2CRand then derived, by fitting the
Pwie, 532 nm 3BC (as in Blum et al., 2006 and Baumgarten et al., 2007).
This two-step procedure would have been less demanding in
3.3 Size distribution retrieval methodology terms of computing time than the simultaneous searct,of

rm ando adopted here.

An optical module coupled to a size-resolving aerosol model In order to estimate the errors in the size distribu-
is used to calculate the three backscatter coefficigats fim tion retrieval, the lidar measurement errorag( iidar,
Bs32nm and B1oe4nm and the two associated colour ratios ACR jigar) are taken into account by searching
(CRss5nm and CRyosanm as a function of the size distribu- the g; and CR; that are within the measurement
tion parameters. In principle, tHeR should not depend on intervals ;i jidar—ABi, lidars Bi.lidar+ABi lidar)  and

N, becauseV, vanishes wheiCR are formed. But, in our (CR jigar—ACR lidar, CR, lidar+ACR jidar) respectively.
size distribution algorithm, that is not the case. In the look-Any (N,, r,, o) combination of the look-up table whose
up table, the refractive index also varies wih becausev,,, associate@; modelaNdCR modelbelong to the measurement
along witho andr,,, determines the aerosol volume concen- intervals is taken as a possible solution. Obviously, the larger
tration and, hence, the condensed mass of gl HO. the lidar errors, the wider the pool of possible solutions.
As the total HN@ and HO is fixed, the partitioning between Note that, in our algorithm, the model errors are ignored.
gas phase and condensed phase as well as the aerosol compor instance, the size distribution retrieval algorithm does
sition depend on aerosol volume concentration. For examplenot account for errors in modelling the particle refractive
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index. In other words, the model is assumed to be perfect.
The additional size distribution retrieval errors originating
from possible model deficiencies are discussed in the results
and conclusion sections.

Several approaches are possible for determining the mode
solution (V,, ry, o). It is possible to simply look for the
best (according to the least-square criterion) match betweer
model simulations and measurements by minimizing the fol-
lowing scalar function:

3

J(N,, T, a):Z
i=1

(wugse) oney 10j0d

(Bi. modet—Bi.idar)” <2 (CRj. moder—C Ry, idar)” )
=1

+
2 2
AB jidar i ACR;

j, lidar

with i or CR mode™ M (No, 0, 7m, A) whereM is the model
operator. W'Oﬁ
This type of quadratic function that quantifies the mis- ceometrical 4 03 02 0100

. . . » 09 08 07 06 05 0.
fit between model and data is variously referred as cost ;:T;Ia;: o, = Median Radius
function, distance function, objective function, or penalty
function in data assimilation (Elbern and Schmidt, 2001). Fig- 3. Colour ratio at 355 nm plotted versus median radjygnd
This simple approach does not even require identifyingStandard deviatios, calculated from Mle theoryrmzrangie?’s from
the pool of possible model solutions, i.e. the combi- 0.01 to 1uum ando from 1.01 to 2. N, is fet to 10=cm = Re-
. fractive index calculations are made at T=186 K, 4.5 ppm®@tnd

nations No,o,rm) Such asXr iidar~AXk tidar<(No, 0, 10 ppbv HNG. Altitude is 22.5 km.
Py A) <Xk, lidar + A Xk, 1idar (With X=BC or CR andk=1 to
5). The best match model solution is indeed identified inde-
pendently from the statistical properties of the cluster of pos-in @ complex way in the size distribution parameter space.
sible solutions. This approach gives the most likely solutionWheno gets close to 1, the particles tend to have their radius
when the model is quasi-"near and the errors are Gaussian_tighﬂy scattered around the median radius. This narrow size

A second approach is to look for the most likely solution distribution enhances the behaviour of the Mie differential
using the statistical properties of the cluster of possible solubackscattering cross section as a function of r, and, when
tions, given the lidar uncertainties. According to estimationis close to 1, its oscillations drive the backscatter as can be
theory, the most likely solution is expected to be found in Seen on Fig. 3 (Bohren and Huffman, 1983). The final clus-
the densest part of the solution cluster, around the maximunter of possible model solutions is the intersection of 5 differ-
of the probability density function (i.e. maximum likelihood ent solution clusters corresponding to the 5 optical quantities
estimation). (=3BC+2CR). The resulting 3-D surface of possible model

The best match solution (i.e. solution corresponding to thesolutions can be very convoluted.
minimization of the model-data misfit) and the most prob- Multiple sensitivity tests have shown that, in several cases,
able solution should be very close if the mod(N,, o, the sole best match approach leads to somewhat unrealistic
rm) Was linear and the errors were Gaussian. However, ouvalues ofN,, r,, ando with, in particular,oc being close
model is highly non-linear. To illustrate the non-linearity to 1. Indeed, the surface df=f(N,, rm, o) sometimes ex-
of the model, Fig. 3 presents typical exampleCds55 nm hibits a deep and extremely localised minimum, but the real-
evolution as a function of,, ando for N,=0.01cn13 and istic solutions are mostly found in a very broad but shallower
the environmental conditions corresponding to the first val-minimum. When looking at the cluster of possible model
idation case (see Sect. 4.1). Depending on the value of theolutions in these cases, the best match solution (i.e. mini-
CRss5nm measurement, there are several possible solutionsnum of J=f(N,, r,,, o)) is found on the edge or even com-
that can be quite scattered all over theando domain. Fig-  pletely disconnected from the cloud of possible solutions in
ure 3 clearly indicates that the solutions to a given value ofthe size distribution parameters space. This is confirmed by
CRss5n0m do not necessarily form a tight cluster in the size other numerical experiments using model-simulaB&ias
distribution parameter space. This is due to the non-linearitymeasurements. In this setup, the synthetic measurements are
of the model and hence, to the high sensitivity of the cal-produced by adding random errors to the model-calculated
culatedBC to the input size distribution parameters. In the BC. The true solution is the set of size distribution parame-
same way, the other model-simulated optical properB€s, ters taken as input to the model. In several cases, depending
or CRyosanm can also have highly non-linear dependencieson the amplitude of the added random errors, the best match
on the size distribution parameters. As shown by Efja6d  solution can be localised in a deep minimum area far away
Eqg. @), the only possible linear relationship at first sight is from the true solution. Therefore, on its own, the best match
the dependency d8C on N,. BC have a somewhat expo- criterion guarantees neither unicity nor optimality of the so-
nential dependency on, ando but this dependency varies lution because of the high non-linearity of the model.

www.atmos-chem-phys.net/8/5435/2008/ Atmos. Chem. Phys., 8, 54382008
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In order to look for a model solution in the densest part of is minimized by varying théBC errors ABjigar Within their
the possible solution cluster, the cluster is filtered based on itsincertainties. The distance is expressed as a scalar function:
spread. The standard deviatiang,, o;,,, ande , on the 3-D
solution cluster are first calculated. Then, any possible so-D(Apiwa=
lutions outside theto=(ow,, 0r,. 0+) €nvelope around the
cluster centre are discarded. The coordinates of the cluste¥hereXpest-matchandXcenterare the size distribution param-
centre are taken as those of the median valueé,of,, and eter X of the best match solution and of the cluster centre
o because the median values are less sensitive to anomalo(@efined as the median value) respectively; ciuster iS the
solution points than the mean values. Overall, this data fil-standard deviation of the size distribution paramefeon
tering ensures removal of most unrealistic possible solutionsthe solution cluster.
As expected, test simulations indicate that stable model solu- The uncertainties on th&C errors are assumed to be 20%
tions are associated with a large number of possible solutionty/pically. Therefore, if theBC error is 12.5% for example,
within the clusters. Therefore, we also check the number otthe distanced is minimized by varying th&C error between
possible solutions left in the filtered cluster and proceed to10% and 15%. The main objective of the whole procedure is
the next step only when there is a significant fraction of theto ensure that the retrieval algorithm produces realistic and
look-up table present in the solution cluster (typically one Stable model solutions (i.e. size distribution parameters) that
hundred points). This issue is of course linked to the ampli-are weakly sensitive to the estimatB€ errors as well as
tude of lidarBC errors and to the resolution of the look-up being consistent with the estimation theory.
table.

The model solution is finally searched within the filtered
cluster of possible solutions. The 3-D size of the initial so-

lution cluster and, hence, the filtered cluster are determinee‘-he first evaluation of the retrieval algorithm is based on
by the amplitude of the lidar errors that are not known accu-p,qre or less coincident lidar and balloonborne size-resolved

rately. We prefer to use the best match approach (i.e. Miniyyeasrements of a stratospheric thick cloud observed above

mum of the model-measurement, as quantified by the scalag) 5\ AR and described in Deshler et al. (2000). The lidar
function J) to determine the final model solution instead of 055 rements provide the input data for the retrieval algo-
an average of the solution cluster, because the best matGfy,,, ang the size-resolved measurements provide the ref-

solution is not sensitive to the size of the solution cluster (€X-g ance values for an independent evaluation of the retrieved
cept when the errors are assumed to be excessively small ang, o gistribution

so the realistic model solution may not be found within the
searched domain in some particular cases), whereas the mean. PSC Observations
or median values of the cluster can fluctuate with the cluster
size. Overall, the uncertainties on the lidar errors are not crit-On 23 January 1996 a thick cloud was detected by lidar
ical for the best match model solution but they do influenceabove ALOMAR. This cloud was present between 19 and
the estimated errors in the retrieved size distribution param26 km. The lidar signal was depolarized between 23 and
eters. Indeed, the standard deviations on the filtered clusteé25 km. The cloud was also probed at about the same time
are taken as estimates of the size distribution retrieval errorswith an Optical Particle Counter (OPC) instrument that pro-
These estimates are possibly lower limits on the retrieval ervided size distribution measurements. European Centre for
rors because the size of the cluster is reduced by the filterind/leteorological Weather Forecasts (ECMWF) analyses indi-
and model errors are ignored. Note that the points within thecated favourable conditions for PSC formation. A detailed
cluster are not exactly normally distributed. Therefore, wedescription of the temporal evolution of the lidar measure-
could have estimated the retrieval error with percentiles thaments and of the cloud structure can be found in Hansen and
do not require any assumptions on the shape of the solutiofoppe (1997). Measurements were carried out at several al-
PDF. However, simple tests have shown that the use of théitudes within the broad cloud layer, both in the depolarizing
standard deviation or the 75 percentile does not have a vergnd non-depolarizing regions of the cloud. These sets of lidar
significant influence on the final estimation. and size-resolving measurements appear to be excellent op
If the inverse problem was properly posed, the best matclportunities to validate our size distribution retrieval method-
solution and the cluster centre should be very close. In ordeplogy. Around 22.5 km, in a non-depolarizing (spherical par-
to be consistent with estimation theory, a final and slight ad-ticles) region of the cloud, Deshler et al. (2000) identified a
justment is carried out using the lidar error as an adjustablaype Ib PSC whose measured size distribution could be fitted
parameter. Indeed, lidar errors are notoriously difficult to es-with a unimodal lognormal distribution. This type Ib PSC
timate (ASAP, 2006). The estimated errors in the measuredepresents an ideal case of validation because it fulfils the
BC are uncertain by at least 20%. Therefore, the distance besonditions of sphericity for the particles and unimodality for
tween the best match solution and the cluster centre (definethe size distribution. The size-resolved measurements of the
by the median values) in the size distribution parameter spacether PSC layers indicated bimodal distributions with some

2 2
(NnAbestmatcrr chenteb " (’m,bestmalc?‘r’m,centel) i (Ubestmatch'ffcemen)z (5)
t .

2 2
ON,,cluster 9}, cluster 9%, cluster

4 Evaluation against size-resolved measurements
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beln_g non-depolarizing. In the depolarizing (non-sphencql-rable 1. Reference and retrieved size distribution parameters on the
particles) layers, type la or even type Il PSC were identi-psc case observed on 23 January 1996. On the left part, OPC size
fied. To check the influence of the sphericity and unimodal- gistribution reference values in Deshler et al. (2000). On the right
ity conditions on the results, we also perform size distribu-part, retrieved values in case of liquid 4ndb) and solid particles

tion retrievals on theses cases where the retrieval system is(@). The associated retrieval errors in the estimated parameters are
priori expected to perform poorly. One of the aims is to iden- bracketed.

tify the size distribution parameter whose retrieval is most

affected by the non-respect of these conditions. All the log- Reference values Retrieved values
normal parameters of the measured (reference) and retrieved Mode 1 Mode 2 m imposed
size distributions are gathered in Table 1. Altitude: 22.45km  Non-depolarizing region (a)
N, (cm3): 7.71 - 11.4 (9%) 6.67 (22%)
i Fm (um): 0.29 - 0.30 (5%)  0.32 (6%)
4.2 Lidar data o: 1.45 - 1.44 (2%)  1.38 (2%)
. ) A (pm2.cm3): 10.4 - 16.8 (20%)  10.6 (40%)
Lidar signals are averaged between 17:50 and 18:30 UTC V (um®.cm™3): 1.4 o 2.4(30%)  1.5(50%)
in order to be coincident with the in situ balloon-borne _Altitude: 21.83km _Non-depolarizing region (b)
size-resolving measurements, as described in Deshler et ((Cf“f)i 5662 01-07‘15 Sfﬁéif’))
. . . . . m): B . B
al. (2000). Itis worth pointing out that, even if the lidar and o 126 133 1.27 (6%)
OPC measurements were truly coinciderBGderived from A (umz.cm*?: 12.63 0.22 17.1 (30%)
lidar data averaged over 40 min is not expected to be equiv- Y (#xm>.em: 1.9 0.16 2.7 (40%)

Altitude: 23.98 km Depolarizing region (c)

alent to aBC calculated from the corresponding patrticle size

istributi ime i Ny (em™3): 8.23 0.005 9.0 (17%
distribution averaged over the same time interval unless the " ™ © (17%)

A 1 avkic rm (um): 0.26 1.68 0.62 (7%)
particle distribution does not vary temporally. TB at oi 1.39 1.34 1.29 (8%)
355 and 532 nm are retrieved using the vibrational Raman A (#m*em 3 8.71 0.21 49.4 (50%)

V (um3.cm3): 0.99 0.15 12 (70%)

N2 scattering detected at 387 and 607 nm respectively. As
the association of elastic and inelastic scattering allows the

determination of the particle extinction, there is no assump-

tion on the value of the lidar ratio (extinction over backscat- py 4 ckets being the estimated retrieval errors. The re-
ter) in the inversion of the equation linking tBC and the  yjeyed values can be compared with the OPC measurements:
lidar signal. The lidar inversion still requires the choice N,=7.71cn73, r,,=0.29m ando =1.45. Ther,, ando val-

of a reference altitude at which tHgC is supposed to be o5 agree extremely well, around a few percent, which is
known (clear-air assumption) (Ansmann et al., 1990, 1992ay,;ithin the error bars. In contrast, the, values differ by

b). Figure 4 shows the backscatter ratios profiles at 35544t 5096 which is a factor 5 higher than the estimated re-
532 and 1064 nm, defined as the total backscatter divided byiaval error in N, (9%). As stated beforeBC and CR are

the Rayleigh (molecular) contribution. These profiles can be, enerally less sensitive t, thanr,, ando. Therefore, the
compared to those obtained in Deshler et al. (2000) who use@ytrieval of N, is expected to be less accurate.

the Klett method for the three wavelengths assuming a lin-  £rom the values oN,, r, ando, one can calculate higher
ear relation between extinction and backscatter (Klett, 1981 ,,qor moments of the size distribution such as the total sur-

1985). There is still an excellent agreement between the tW@,.e grea density and volume density’ that are key quan-
inversion techniques. We estimate the errors in our determisjjies for heterogeneous chemistry and, hence, ozone loss:
nation of the backscatter coefficient to be about 10% at 355

4
and 532 nm, and 20% at 1064 nm. A=N,.4r.r2 % In20] andV=N0.%,r§1,e[%'n20], ©)

4.3 Non-depolarizing unimodal size distribution For our retrieved size distribution parameters,
A=16.8um?.cm 3 (20%) and V=2.4um3.cm 3 (30%).
The unimodal type Ib PSC was observed at about 22.5 kmFor the OPC reference measurements;10.4,m?2.cm—3
The temperature was about 186 K according to the measureand V=1.4um3.cm2 with uncertainties of around 30%,
ments. This temperature is used here as input to the microwith 20% originating from the OPC measurement errors
physical model. The volume mixing ratios in total HYO and 10% from errors in the refractive index (Deshler et al.,
and HO required by the model are set to the typical val- 2000). OurA andV values differ by about 60% from the
ues of 10ppbv and 4.5 ppmv respectively. The ranges ofeference values, which is almost greater than the total (=
size distribution parameters considered by the retrieval algosize distribution retrieval+ OPC) errors. Althoughand V
rithm are as follows: 108<Ny<20cn3, 10 3<rp,<3um  are most sensitive tg, (power law dependency), the 60%
and 1.0ko<2. After applying the retrieval algorithm bias onA and V mostly originates from the bias iwv,.
to the BC and CR data, we obtainN,=11.4 cnr3(9%), Indeed, the respective 3% and 1% biases,pando only
rn=0.30um (5%) ando=1.44 (2%) with the numbers in leadto a 5% errorim andV. Itis not totally surprising that
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27 - tion. The total number of particles, still appears to be the
X most difficult parameter to retrieve accurately((lMr et al.,
25 2= o 1999; Bhckmann and Kirsche, 2006).
— A s L ~5 1 4.4 Assumptions of unimodality and sphericity
£ 23 et i == -
3 { 5 ¢ 4.4.1 Bimodal size distribution
[ .)
.g 21 It S ’-'." A non-depolarizing PSC layer with a bimodal size distri-
= . _¢| - o bution was detected around 21.8km (Deshler et al., 2000).
19— The values of the size distribution parameters of the two
,,"/ ----355nm modes are given in Table 1b. Using them as inputs to
17 —--532nm — the optical model, the simulateéBC of the small particle
,.J — — 1064 nm mode is found to be more than a hundred times higher
%5 ——8 than the BC of the large particle mode at all the con-

sidered wavelengths. The retrieval algorithm is applied

1 10 100 at the 21.8 km altitude for the corresponding pressure and
. temperature and for the same conditions as above (to-

Backscatter Ratio tal HNO3 and HO, considered ranges of size distribu-

Fig. 4. Backscatter ratio profiles associated with lidar measure-t'orl parameters and lidar errors). The retrieved values are

— 3 — —
ments performed at ALOMAR on 23 January 1996. Lidar signals Nf’_7'3 cnm (1%%)' r3m‘0'41'“m (6%) andga-l.%? (6%),
are averaged between 17:50 and 18:30 UTC. with A=17.1pm?.cm™> (30%) andV'=2.7 um?>.cm™= (40%).

As expected, the retrieved parameters are found to reflect
the optically dominant mode of the small particles. They

. ) can be compared to the OPC-derived reference parameters
BC are less sensitive t¥, and hence, tha, is the most 4t the small particles modeW,=5.63 cnT3, r,,=0.4um and
difficult parameter to retrieve. The Mie scattering kernels ;1 »g with A=12.6m?.cm3 and V:1.§Mm3.cm‘3). As

in the spectral range of interest (from 0.385 to 1/02) o the previous case featuring an unimodal distribution, the
show that lidar dat.a are most sensitive to particles in theagreement with the reference values is excellent-foand
0.1-1 um range (Fig. 4.28 in ASAP, 2006). As a result, the ;"534 the largest discrepancy is found fg5. The bias in
moments that depend on smaller particles (such asvihe  y results in retrieved values @f andV that differ from the
concentration) are less likely to be accurately retrieved. reference values by about 40%. Again, the retrieval is found
To check the stability of the solution, the retrieval is per- to be stable regarding the specified lidar errors. The results
formed with BC errors ranging from 5% to 50%. The so- show that the algorithm can be applied to multimodal size
lution does not change from around 10% to 50% lidar er-distributions, but that the retrieved size distribution parame-
rors. When lidar errors are lower than 10%, another solutionters are only relevant to the optically dominant mode.
(N,=11cnt3, r,,=0.32um ando=1.39) is identified. How-
ever, this solution has to be discarded because of the verg.4.2 Spherical particles
low number of points present in the solution cluster. Be-
sides, lidar errors are unlikely to be lower than 10%. An- A depolarizing PSC layer was observed around 24 km. Its
other test is carried out with a look-up table that does notsize distribution was bimodal. The exact type of this solid
cover the range of the reference OPC values. As expected?SC, or at least, PSC containing a mode of solid particles,
no solutions are identified. Overall, it can be concluded thathas not been clearly defined. Based on morphology and
the algorithm appears to perform well, especially when re-colour index, Hansen and Hoppe (1997) concluded that it
trieving the size distribution parameters and o of uni- was a type Il (ice) PSC whereas Deshler et al. (2000) anal-
modal liquid PSC distributions. The overall errors on the ysed the measured size distribution and the associated par-
integrated quantitiest and V as well as theN, parame- ticle volume to arrive at a type la (Nitric Acid Trihydate)
ter appear to be higher than errors derived theoretically folPSC. As for the case of the liquid bimodal distribution pre-
methodologies using regularization techniquesi{bt etal.,  viously considered, optical model calculations indicate that
1999; Bbckmann and Kirsche, 2006). Such studies use exthe optical signal of the small particle mode is largely dom-
tinction coefficients on the top of backscattering coefficientsinant over the signal of the large particle mode. As solid
at tropospheric altitudes. In our case, the extinction coeffi-PSC are composed of non-spherical particles, this case is
cient is not retrieved with sufficient accuracy at stratosphericused to test the influence of the presence of non-spherical
altitudes to be used as an additional constraint in the retrievaparticles on the quality of the retrieval. The retrieved
procedure, thus leading to higher errors on the final estimavalues areN,=9.0cnm3, r,=0.62um and 0=1.29 with
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A~49um?.cm~3 and Va12um?.cm—3. The OPC-derived 1.432 -

parameters for the small particle mode wefg=8.2 cnm 3, a)
rm=0.26pm and ¢=1.39 with A~9.0um2.cm~3 and -y /\
Va1.0um3.cm 2. In contrast to the previous results, the ' ~—~ \

agreement is very poor faf, ando but it is satisfactory for

N,. The very large discrepancies op ando lead to re-
trieved values ofA and V differing from the OPC-derived
values by a factor 5-10. Note that the refractive index value
was calculated for STS particles, whose value is close to the
NAT value. We also performed a retrieval forcing the re-
fractive index to be equal to the PSC type Il refractive index 1428 ' l ' |
value as inferred in Scarchilli et al. (2005). But the overall 1 2 3 4 5
results do not change very significantly. The size distribution Water vapour mixing ratio [ppmv]

was found to beV,=7 cm 3, r,,=0.53um ando=1.75 with 1.436 -
A~46um2.cmi~3 and V~18um?.cm 3. Accounting for a '

1,430
\

Refractive index

1.429

dex

ive in

Refract

more accurate refractive index does not improve the retrieval 4 44, b) /

in this case. /
As expected, using Mie theory for non-spherical particles 1.432

results in erroneous retrieved parameters. For the retrieval ol /

solid PSC size distributions, it is necessary to replace the Mie S 4 430 ™

optical model by a T-matrix optical model in the algorithm / \ /

(Mishchenko and Travis, 1998), possibly making the particle 1.428 -

asphericity (for example the aspect ratio) one of the control

variables along withv,, r,, ando. 1.426

T T T T T T 1

184 186 188 190 192 194 196 198

Temperature [K]

4.5 Refractive index

An important issue in the retrieval is connected to the mod-
ieslIIggu?;ﬁ;en:gfsrfztéﬁ;;\?ee?al Tl?jt t:{ascl;socsastitt()elrec:);rfg(;egft (a)_and temperaturéb). Wavel_ength is 53_2 nm, size distribution is

. . L ! as in Table 1a. Water vapour is 4.5 ppmv in getand temperature
values is relatively limited (1.3-1.6) (Deshler et al., 2000; ;s 156 k in plot(b).
Luo et al., 1996; Scarchilli et al., 2005). For the case of
the non-depolarizing unimodal distribution, the STS equilib-
rium Composition was calculated for an assumed 4.5 ppm\}:he 60% difference Inltla”y obtained when the refractive in-
H,O and 10 ppbv HN@giving a refractive index of 1.45 at dex was calculated by the model (Sect. 4.3). Although the
355nm and reducing to 1.43 at 1064 nm (Luo et al., 1996).change inm seems to be very marginal (about 0.03 or 2%),
Deshler et al. (2000) inferred anvalue of 1.42-0.03 for the it has a prOfOUnd effect on the retrieval reSUltS, Confirming
same PSC from a Comparison between Scattering and SiZ@y the way that the backscatter coefficient is hlgh'y sensitive
resolved aerosol concentration measurements. They als® m. The results obtained by bypassing the modelling of
concluded that this value was higher than expected on théhe composition and refractive index suggest that most of the
basis of |aborat0ry experiment31 measurements in Antarcbias in the initial retrieval was due to errorssinand not to
tica and theory. In order to estimate the impact of this Problemsinthe Monte Carlo approach. This further validates
uncertainty on the results, another retrieval is performed orPur retrieval methodology.
the same case, but with the refractive index calculation re- If the refractive index inferred by Deshler et al. (2000) is
placed by settingn to 1.48, 1.46 and 1.51 at 355, 532 and taken as a reference value, the biagiinould originate from
1064 nm wavelengths respectively, as provided in Deshler ekither errors in the relationship linking to the particle com-
al. (2000). The retrieved parameters Agg=6.7 cnT 3 (22%), position (Luo et al., 1996) or uncertainties in modelling the
rm=0.32um (6%) andr=1.38 (2%) withA=10.6um?.cm~3 composition. The input variables are the temperature, pres-
(40%) andV=1.5um3.cm—3 (50%). Let us recall that the sure and total HN@and HO mixing ratios. The tempera-
OPC reference values wehe,=7.71cn3, r,,=0.29um and ture is taken from in situ measurements and therefore should
0=1.45 withA=10.4um?.cm~3 andV=1.4umi.cm3. The  not carry a large uncertainty. The volume mixing ratio of
quality of the retrieval is slightly degraded fof ando, butit ~ total HNO; and HO were set to typical values (10 ppbv
improves drastically fov,. The improvement is even more HNO3 and 4.5 ppmv HO). If ice clouds had occurred prior
noticeable foA andV; the retrieved values are now within to the lidar measurements, the water vapour content could
1% and 7% respectively of the reference values instead ohave decreased significantly. Measurements at Sodaoky|

Fig. 5. Plots of the refractive index versus water vapour mixing ratio
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Blum et al. (2006) and first searched ferandr,, by fit-
ting the 2CR and then derivedv, by fitting the 3BC. They

[ did not consider the errors in the lidar measurements and re-
037 trieved the parameters by simply looking for the minimum
0,35 of the misfit between model simulations and measurements
(i.e. best match solution). The size distributions were found
to be very narrow throughout the 5 km thick cloud. Retrieved
values ofr,, ando were more or less constant at .6 and
1.04 respectively whereas, varied between 2 and 20 crh
6357 We processed the lidar signal using vibrational Raman de-
N (... tection for determining th&C and rotational Raman detec-
N tion at 529 and 530 nm to get the in situ temperature using
[0 the Rotational Raman Technigue (Cooney and Pina, 1976;
el Nedeljkovic et al., 1993). The determination of a simulta-

2 : neous and collocated temperature profile improved the ac-
curacy of both theBC and the chemical composition mod-

Fig. 6. Cost function in the,, o) space for the size distribution elling. The volume mixing ratios of total HNand HO

retrieved in Sect. 5. Associated values N are not displayed. ~are Set to the typical values of 10 ppbv and 4.5 ppmv respec-
The purely best match solution is found within the encircled area.tively. Lidar backscatter errors are increased to 20% at 355

Taking lidar errors into account, the densest part of the solutionand 532 nm to account for differences in the inversion pro-
cluster is found to be within the squared area. cedure with theBC retrieval of Blum et al. (2006). The full
retrieval procedure gived/,=16 cnT3 (20%), r,,=0.26..m
23 January at 00:00 UTC indicated thag®dropped under (7%) ando=1.27 (5%) in the middle of the PSC layer, at
3 ppmv between 22 and 24 km @vhel et al., 1997). There- 21km. The difference with the results of Blum et al. for the
fore, lower KO could have been considered. An additional o Value is well beyond any possible retrieval errors. When
retrieval is performed with 3 ppmv of total#®. The results ~ the measurement errors are ignored (i.e. skipping the cluster
are very close to those presented in Sect. 4.3. The effect diltering and statistical error analysis), our retrieval becomes
H,O and temperature uncertainties on the model-calculated search for the best match solution only. This simplified
refractive index is further illustrated in Fig. 5. Size distribu- version of our retrieval algorithm is then applied to the same
tion parameters and altitude are set to the reference values §flar data, but the cluster size is still used to estimate the re-
the liquid unimodal distribution given in Table 1. The curves trieval errors. The retrieved parameters becavpe9 cni>
show that the uncertainties on the temperature as@d tan ~ (47%),7,=0.34 um (18%) ando=1.04 (12%) which is in
account for, at best, a 5.18change inn which is largely in- excellent agreement with the results of Blum et al. (2006).
sufficient to explain the 0.03 discrepancy with the refractive The results clearly illustrate the importance of the lidar
index derived by Deshler et al. (2000). It is difficult for us to €rrors and of the model non-linearity in the choice of the
pinpoint the exact reasons for the discrepancy on this particbest estimator. The best match solution is found to be out-
ular case because of several possible sources of biases, rarfdde theto boundary of the initial solution cluster. It corre-
ing from the lack of spatio-temporal coincidence between thesPonds to a very localised and deep minimum in the surface
lidar and size-resolving measurements, errors in the compaof the model-data misfit function (see Fig. 6). But the high-
sition model itself (for example, the assumption of thermo- est density of possible solutions (when lidar errors are ac-
dynamical equilibrium) or errors in the relationship between counted for) is found in a very broad but shallower minimum
composition andn (Luo et al., 1996; Larsen et al., 2000). in that case. The advantage of the filtering can be further
In addition, the refractive indices of PSC do not appear tolustified by performing a retrieval in which the backscatter

be known with an accuracy better than 0.03 (Scarchilli et al.,at 532 nm is substantially biased on purpose (i.e. increasing
2005). BCs32nm by 20%). To be consistent, the error BCs32 nm

is also increased by 20%. The retrieval is performed with
the biasedBCs32nm and the associated bias€Rzs5 nm and
5 Evaluation against a simplified estimation methodol-  CRi064 nmWhile BCass5 nmandBCioe4 nmremain unchanged.
ogy The retrieved parameters for the purely best match solution
(no cluster filtering) areV,=2.9 cnt3 (150%),r,,=0.51um
Our results are then compared to values retrieved with an{15%) ando=1.04 (10%) whereas the full retrieval (includ-
other approach that is similar but does not consider the efing cluster filtering) givesv,=11.5cnt3 (20%), r,,=0.31
fect of the non-linearity of the model on the likelihood of um (7%) ando=1.22 (5%). The different results of this
the solution (Blum et al., 2006). The test case is a liquidtest are summarized in Table 2. The no-filtering retrieval
PSC observed over northern Scandinavia on 5 January 200gives N, andr,, values for the artificially biase8Cs32 nm

High
values

a

048

Low
values

0,33

«—
e e e e

(wr) snipey ueipaiy

1.01
1,04
1,08
1,1
1,14
1
2
2

Gemotrical Standard Deviation
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Table 2. Reference and retrieved size distribution parameters on the PSC case observed on 5 January 2005. Reference values come fror
Blum et al. (2006). The table gives the size distributions retrieved with (full algorithm) and without (best match algorithm) the cluster filtering
step. Errors in the retrieved parameters are bracketed.

No(©M3) 1y (um) o
Reference size distribution
5 January 2005 (Blum et al., 2006) 2-20 0.3 1.04
Size distribution retrieval
Best match approach: 9 (47%) 0.34 (18%) 1.04 (12%)
Statistical filtering: 16 (20%) 0.26 (7%) 1.27 (5%)
Size distribution retrieval K C535 biased)
Best match approach: 3(150%) 0.51(15%) 1.04 (10%)
Statistical filtering: 11.5 (20%) 0.31 (7%) 1.22 (5%)

that are completely different, well beyond the retrieval error phuric acid aerosol (binary 4$04/H20 solution) and liquid
bars, from those produced with the unbia®@32m In type Ib PSC patrticles (ternary STS solution). We then gener-
contrast, taking into account the retrieval error bars, the re-ate a look-up table of backscatter coefficients as a function of
sults of the full retrieval with the artificially biase®Cs32 nm the particle size distribution parameters. Modelling the com-
are fully consistent with the full retrieval with the unbiased position allows us to account for the rapid variation of the
BCs32nm Our retrieval algorithm shows less sensitivity to particle composition, and hence, the refractive index around
the specified lidar errors and a much greater convergence artie PSC type Ib temperature threshold. This refractive index
stability when the statistical filtering is applied. modelling requires the local temperature to be known accu-
rately because the temperature remains the key parameter re-
garding PSC formation.
6 Summary and conclusions To be able to resolve the inverse problem from measure-
ments at only three wavelengths, the size distribution is as-
This paper introduces a particle size distribution retrievalsumed to be unimodal. The particles are also assumed to be
method developed to take advantage of the numerous 3spherical, due to the use of Mie theory in the optical mod-
wavelength lidar setups. It is based on comparing measuredlling. The model errors are ignored. Our methodology
and model-simulated lidar backscatter coefficients. The rewas described and validations were performed against size-
trieval algorithm minimizes a cost function of the misfit be- resolved OPC measurements and against a similar approach.
tween measurements and model simulations with the controT he first validation case is a PSC event observed above ALO-
variables being the parameters of the PSC size distributionMAR on 23 January 1996. OPC size distribution measure-
In similar approaches, the estimator is often chosen as thenents performed by Deshler et al. (2000) on this PSC pro-
sole “best match” estimator (i.e. best estimation correspondvided the reference validation dataset. Due to photo-counting
ing to the best fit between modelled and measured backscastatistics, calculations from OPC measurements suffer from
ter coefficients). The errors in the lidar backscatter coeffi-an error of about 20%.
cients and associated colour ratios are rarely used as input In regions where the criteria of unimodality and sphericity
parameters in the retrieval procedure. This may be criticalare fulfilled, the parameters of size distribution of PSC type
in that the retrieval problem is highly non linear, and, on its |b particles are mostly correctly retrieved, with a respective
own, the best match criterion guarantees neither unicity noB3% and 1% error in the median radiug, (rand standard de-
optimality of the solution. Our approach looks for the most viation (o) (see Table 1a). The total number of partiches
likely estimation, using the statistical properties of the so-is found to be the most difficult parameter to retrieve accu-
lution cluster given the lidar uncertainties. This solution is rately, with an error of around 50%. In addition, we ran our
expected to be found in the densest part of the solution clusretrieval algorithm at other altitudes, where non-depolarizing
ter, around the maximum of the probability density function. (spherical particles) bimodal size distributions are observed,
With our retrieval procedure, we aim at producing realistic to check the influence of the assumption of unimodality.
and stable estimators of the size distribution parameters thatvhen retrieving the size distribution of this bimodal parti-
are weakly sensitive to the specified backscatter coefficientle population, the retrieved parameters mainly correspond
errors that are difficult to estimate accurately. to the particle mode that dominates the lidar backscatter sig-
We use a microphysical model to calculate the refractivenal (see Table 1b). Overall, the results appear to be satisfying
index from the particle composition, taking into account sul- for spherical particles.
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