35 research outputs found

    Unveiling exceptional Baltic bog ecohydrology, autogenic succession and climate change during the last 2000 years in CE Europe using replicate cores, multi-proxy data and functional traits of testate amoebae

    Get PDF
    We present the results of high-resolution, multi-proxy palaeoecological investigations of two parallel peat cores from the Baltic raised bog Mechacz Wielki in NE Poland. We aim to evaluate the role of regional climate and autogenic processes of the raised bog itself in driving the vegetation and hydrology dynamics. Based on partly synchronous changes in Sphagnum communities in the two study cores we suggest that extrinsic factors (climate) played an important role as a driver in mire development during the bog stage (500–2012 CE). Using a testate amoebae transfer function, we found exceptionally stable hydrological conditions during the last 2000 years with a relatively high water table and lack of local fire events that allowed for rapid peat accumulation (2.75 mm/year) in the bog. Further, the strong correlation between pH and community-weighted mean of testate amoeba traits suggests that other variables than water-table depth play a role in driving microbial properties under stable hydrological conditions. There is a difference in hydrological dynamics in bogs between NW and NE Poland until ca 1500 CE, after which the water table reconstructions show more similarities. Our results illustrate how various functional traits relate to different environmental variables in a range of trophic and hydrological scenarios on long time scales. Moreover, our data suggest a common regional climatic forcing in Mechacz Wielki, Gązwa and Kontolanrahka. Though it may still be too early to attempt a regional summary of wetness change in the southern Baltic region, this study is a next step to better understand the long-term peatland palaeohydrology in NE Europ

    The Eurasian Modern Pollen Database (EMPD), version 2

    Get PDF
    The Eurasian (née European) Modern Pollen Database (EMPD) was established in 2013 to provide a public database of high-quality modern pollen surface samples to help support studies of past climate, land cover, and land use using fossil pollen. The EMPD is part of, and complementary to, the European Pollen Database (EPD) which contains data on fossil pollen found in Late Quaternary sedimentary archives throughout the Eurasian region. The EPD is in turn part of the rapidly growing Neotoma database, which is now the primary home for global palaeoecological data. This paper describes version 2 of the EMPD in which the number of samples held in the database has been increased by 60 % from 4826 to 8134. Much of the improvement in data coverage has come from northern Asia, and the database has consequently been renamed the Eurasian Modern Pollen Database to reflect this geographical enlargement. The EMPD can be viewed online using a dedicated map-based viewer at https://empd2.github.io and downloaded in a variety of file formats at https://doi.pangaea.de/10.1594/PANGAEA.909130 (Chevalier et al., 2019)Swiss National Science Foundation | Ref. 200021_16959

    The Eurasian Modern Pollen Database (EMPD), version 2

    Get PDF
    The Eurasian (nee European) Modern Pollen Database (EMPD) was established in 2013 to provide a public database of high-quality modern pollen surface samples to help support studies of past climate, land cover, and land use using fossil pollen. The EMPD is part of, and complementary to, the European Pollen Database (EPD) which contains data on fossil pollen found in Late Quaternary sedimentary archives throughout the Eurasian region. The EPD is in turn part of the rapidly growing Neotoma database, which is now the primary home for global palaeoecological data. This paper describes version 2 of the EMPD in which the number of samples held in the database has been increased by 60% from 4826 to 8134. Much of the improvement in data coverage has come from northern Asia, and the database has consequently been renamed the Eurasian Modern Pollen Database to reflect this geographical enlargement. The EMPD can be viewed online using a dedicated map-based viewer at https://empd2.github.io and downloaded in a variety of file formats at https://doi.pangaea.de/10.1594/PANGAEA.909130 (Chevalier et al., 2019).Peer reviewe

    Wizyta międzynarodowej grupy paleobotaników na Ostrowie Lednickim

    No full text
    corecore