127 research outputs found

    Advances in Methods for tRNA Sequencing and Quantification

    Get PDF
    In the past decade tRNA sequencing (tRNA-seq) has attracted considerable attention as an important tool for the development of novel approaches to quantify highly modified tRNA species and to propel tRNA research aimed at understanding the cellular physiology and disease and development of tRNA-based therapeutics. Many methods are available to quantify tRNA abundance while accounting for modifications and tRNA charging/acylation. Advances in both library preparation methods and bioinformatic workflows have enabled developments in next-generation sequencing (NGS) workflows. Other approaches forgo NGS applications in favor of hybridization-based approaches. In this review we provide a brief comparative overview of various tRNA quantification approaches, focusing on the advantages and disadvantages of these methods, which together facilitate reliable tRNA quantification

    Analysis of 3.5 Million SARS-CoV-2 Sequences Reveals Unique Mutational Trends with Consistent Nucleotide and Codon Frequencies

    Get PDF
    Background: Since the onset of the SARS-CoV-2 pandemic, bioinformatic analyses have been performed to understand the nucleotide and synonymous codon usage features and mutational patterns of the virus. However, comparatively few have attempted to perform such analyses on a considerably large cohort of viral genomes while organizing the plethora of available sequence data for a month-by-month analysis to observe changes over time. Here, we aimed to perform sequence composition and mutation analysis of SARS-CoV-2, separating sequences by gene, clade, and timepoints, and contrast the mutational profile of SARS-CoV-2 to other comparable RNA viruses.Methods: Using a cleaned, filtered, and pre-aligned dataset of over 3.5 million sequences downloaded from the GISAID database, we computed nucleotide and codon usage statistics, including calculation of relative synonymous codon usage values. We then calculated codon adaptation index (CAI) changes and a nonsynonymous/synonymous mutation ratio (dN/dS) over time for our dataset. Finally, we compiled information on the types of mutations occurring for SARS-CoV-2 and other comparable RNA viruses, and generated heatmaps showing codon and nucleotide composition at high entropy positions along the Spike sequence.Results: We show that nucleotide and codon usage metrics remain relatively consistent over the 32-month span, though there are significant differences between clades within each gene at various timepoints. CAI and dN/dS values vary substantially between different timepoints and different genes, with Spike gene on average showing both the highest CAI and dN/dS values. Mutational analysis showed that SARS-CoV-2 Spike has a higher proportion of nonsynonymous mutations than analogous genes in other RNA viruses, with nonsynonymous mutations outnumbering synonymous ones by up to 20:1. However, at several specific positions, synonymous mutations were overwhelmingly predominant.Conclusions: Our multifaceted analysis covering both the composition and mutation signature of SARS-CoV-2 gives valuable insight into the nucleotide frequency and codon usage heterogeneity of SARS-CoV-2 over time, and its unique mutational profile compared to other RNA viruses

    Splicing Dysregulation Contributes to the Pathogenicity of Several F9 Exonic Point Variants

    Get PDF
    Background: Pre‐mRNA splicing is a complex process requiring the identification of donor site, acceptor site, and branch point site with an adjacent polypyrimidine tract sequence. Splicing is regulated by splicing regulatory elements (SREs) with both enhancer and suppressor functions. Variants located in exonic regions can impact splicing through dysregulation of native splice sites, SREs, and cryptic splice site activation. While splicing dysregulation is considered primary disease‐inducing mechanism of synonymous variants, its contribution toward disease phenotype of non‐synonymous variants is underappreciated. Methods: In this study, we analyzed 415 disease‐causing and 120 neutral F9 exonic point variants including both synonymous and non‐synonymous for their effect on splicing using a series of in silico splice site prediction tools, SRE prediction tools, and in vitro minigene assays. Results: The use of splice site and SRE prediction tools in tandem provided better prediction but were not always in agreement with the minigene assays. The net effect of splicing dysregulation caused by variants was context dependent. Minigene assays revealed that perturbed splicing can be found. Conclusion: Synonymous variants primarily cause disease phenotype via splicing dysregulation while additional mechanisms such as translation rate also play an important role. Splicing dysregulation is likely to contribute to the disease phenotype of several non‐synonymous variants

    Insilico and Invitro anthelmintic properties of phytocompounds in Rostellularia quinquangularis (J. Koenig ex Roxb.) Nees

    Get PDF
    The present study aimed to evaluate the anthelmintic activity of various extracts of Rostellularia quinquangularis (R. quinquangularis) against adult Indian earthworms (Pheretima posthuma). Petroleum ether extract (PERQ), ethyl acetate extract (RQEA), and ethanol extract (RQEE) of R. quinquangularis were tested at different concentrations (10, 20, 50, and 100 mg/mL), along with the positive control (albendazole) and negative control (normal saline). Anthelmintic activity was assessed based on the duration of paralysis and mortality. The RQEE extract showed significant anthelmintic activity, with the highest activity observed at a concentration of 100 mg/mL, exhibiting paralysis time of 1.62 min and death times of 19.9 min, compared to the standard albendazole. Further, HR LC-MS analysis of the RQEE extract revealed the presence of various phytoconstituents based on m/z signals. Molecular docking analysis using AutoDock Vina indicated that Columbianetin, Dunnione, Cryptochlorogenic acid, Gaylussacin, Luvangetin, and Albendazole showed docking scores of -8.1, -7.9, -7.4, -7.3, -7.2, and -6.8 Kcal/mol, respectively. These results suggest that R. quinquangularis possesses potent anthelmintic activity, supporting its traditional use in medicinal practices.

    Mitochondrial DNA based diversity studies reveal distinct and sub-structured populations of pearlspot, Etroplus suratensis (Bloch, 1790) in Indian waters

    Get PDF
    Not AvailablePearlspot (Etroplus suratensis) is one of the most commercially important brackish water fish species widely found along the coastal regions of peninsular India and Sri Lanka. Pearlspot is known for its tender flesh, delectable taste, culinary tourism and high yielding market value. Information on the genetic makeup of stocks/populations is extremely vital as it forms the basis for future genetic studies. For this, we utilized ATPase6/8 genes of mtDNA of pearlspot populations collected from nine different locations ranging from Ratnagiri in Maharashtra state on the west coast to Chilika in Odisha on the east coast. Sequence analyses of these genes revealed 33 polymorphic sites, which include 17 singleton and 16 parsimony informative sites. Pair-wise genetic differentiation study (FST = 0.75) indicated significant (P <0.001) differences among all the pairs of stocks except those from Chilika and Nagayalanka. The spatial analysis of molecular variance (SAMOVA) significantly delineated the population into four groups (FCT = 0.69, P = 0.0001), namely northwest (Ratnagiri and Goa); southwest (Mangalore and lakes at Vembanad, Ashtamudi and Vellayani in Kerala); southeast (Pulicat in Tamil Nadu) and northeast (Chilika in Odisha and Nagayalanka in Andhra Pradesh). The above delineation is supported by clades of the phylogenetic tree and also the clusters of median joining haplotype network. The high haplotype diversity (0.84), low nucleotide diversity (0.003), and negative values of Tajima’s D (–1.47) and Fu’s Fs statistic (–14.89) are characteristic of populations having recently undergone demo graphic expansion. Mantel test revealed significant isolation by distance. The study identifies highly delineated structured populations with restricted gene flow. If such a stock is overfished, it is highly unlikely that it would recover through migration. For any future breeding programme in this species, it would be desirable to form a base population which incorporates the genetic material from all the locations so that we get a wide gene pool to select from.Not Availabl

    Chromosomal-level assembly of the Asian Seabass genome using long sequence reads and multi-layered scaffolding

    Get PDF
    We report here the ~670 Mb genome assembly of the Asian seabass (Lates calcarifer), a tropical marine teleost. We used long-read sequencing augmented by transcriptomics, optical and genetic mapping along with shared synteny from closely related fish species to derive a chromosome-level assembly with a contig N50 size over 1 Mb and scaffold N50 size over 25 Mb that span ~90% of the genome. The population structure of L. calcarifer species complex was analyzed by re-sequencing 61 individuals representing various regions across the species' native range. SNP analyses identified high levels of genetic diversity and confirmed earlier indications of a population stratification comprising three clades with signs of admixture apparent in the South-East Asian population. The quality of the Asian seabass genome assembly far exceeds that of any other fish species, and will serve as a new standard for fish genomics

    DNDI-6174 is a preclinical candidate for visceral leishmaniasis that targets the cytochrome bc1

    Get PDF
    New drugs for visceral leishmaniasis that are safe, low cost, and adapted to the field are urgently required. Despite concerted efforts over the last several years, the number of new chemical entities that are suitable for clinical development for the treatment of Leishmania remains low. Here, we describe the discovery and preclinical development of DNDI-6174, an inhibitor of Leishmania cytochrome bc1 complex activity that originated from a phenotypically identified pyrrolopyrimidine series. This compound fulfills all target candidate profile criteria required for progression into preclinical development. In addition to good metabolic stability and pharmacokinetic properties, DNDI-6174 demonstrates potent in vitro activity against a variety of Leishmania species and can reduce parasite burden in animal models of infection, with the potential to approach sterile cure. No major flags were identified in preliminary safety studies, including an exploratory 14-day toxicology study in the rat. DNDI-6174 is a cytochrome bc1 complex inhibitor with acceptable development properties to enter preclinical development for visceral leishmaniasis.</p

    DNDI-6174 is a preclinical candidate for visceral leishmaniasis that targets the cytochrome bc1

    Get PDF
    New drugs for visceral leishmaniasis that are safe, low cost, and adapted to the field are urgently required. Despite concerted efforts over the last several years, the number of new chemical entities that are suitable for clinical development for the treatment of Leishmania remains low. Here, we describe the discovery and preclinical development of DNDI-6174, an inhibitor of Leishmania cytochrome bc1 complex activity that originated from a phenotypically identified pyrrolopyrimidine series. This compound fulfills all target candidate profile criteria required for progression into preclinical development. In addition to good metabolic stability and pharmacokinetic properties, DNDI-6174 demonstrates potent in vitro activity against a variety of Leishmania species and can reduce parasite burden in animal models of infection, with the potential to approach sterile cure. No major flags were identified in preliminary safety studies, including an exploratory 14-day toxicology study in the rat. DNDI-6174 is a cytochrome bc1 complex inhibitor with acceptable development properties to enter preclinical development for visceral leishmaniasis.</p

    Herpesvirus Telomerase RNA (vTR) with a Mutated Template Sequence Abrogates Herpesvirus-Induced Lymphomagenesis

    Get PDF
    Telomerase reverse transcriptase (TERT) and telomerase RNA (TR) represent the enzymatically active components of telomerase. In the complex, TR provides the template for the addition of telomeric repeats to telomeres, a protective structure at the end of linear chromosomes. Human TR with a mutation in the template region has been previously shown to inhibit proliferation of cancer cells in vitro. In this report, we examined the effects of a mutation in the template of a virus encoded TR (vTR) on herpesvirus-induced tumorigenesis in vivo. For this purpose, we used the oncogenic avian herpesvirus Marek's disease virus (MDV) as a natural virus-host model for lymphomagenesis. We generated recombinant MDV in which the vTR template sequence was mutated from AATCCCAATC to ATATATATAT (vAU5) by two-step Red-mediated mutagenesis. Recombinant viruses harboring the template mutation replicated with kinetics comparable to parental and revertant viruses in vitro. However, mutation of the vTR template sequence completely abrogated virus-induced tumor formation in vivo, although the virus was able to undergo low-level lytic replication. To confirm that the absence of tumors was dependent on the presence of mutant vTR in the telomerase complex, a second mutation was introduced in vAU5 that targeted the P6.1 stem loop, a conserved region essential for vTR-TERT interaction. Absence of vTR-AU5 from the telomerase complex restored virus-induced lymphoma formation. To test if the attenuated vAU5 could be used as an effective vaccine against MDV, we performed vaccination-challenge studies and determined that vaccination with vAU5 completely protected chickens from lethal challenge with highly virulent MDV. Taken together, our results demonstrate 1) that mutation of the vTR template sequence can completely abrogate virus-induced tumorigenesis, likely by the inhibition of cancer cell proliferation, and 2) that this strategy could be used to generate novel vaccine candidates against virus-induced lymphoma

    Effect of edible oils on quercetin, kaempferol and galangin transport and conjugation in the intestinal Caco-2/HT29-MTX co-culture model

    Get PDF
    Solubility and matrix play an important role in the gut lumen in delivering bioactive compounds to the absorptive surface of enterocytes. The purpose of this study was to determine the effect of certain commonly consumed lipids, soybean, olive and corn oil, on the transport and conjugation of flavonols (myricetin, quercetin, kaempferol and galangin) using the conjugation-competent co-cultured Caco-2/HT29-MTX intestinal cell monolayer model. To enable identification and quantification of conjugates, each flavonol was enzymatically glucuronidated or sulphated, then analysed by HPLC with triple quadrupole mass spectrometric detection. Quantification showed large differences in mass spectrometric peak area response factors between the aglycones and many of the conjugates, with galangin-sulphate for example ionising ∌15-fold better than galangin. Flavonol aglycones and conjugates were transported to the basolateral side of Caco-2/HT29-MTX co-cultures. The total amount of methyl, sulphate and glucuronide conjugates was in the order: galangin > quercetin > kaempferol > myricetin. All oils inhibited the transport and conjugation of galangin, the most hydrophobic flavonol, whereas they increased the sulphation, and to some extent glucuronidation, of quercetin and kaempferol. The results show that the lipid matrix has the potential to modify both transport and conjugation of dietary flavonols, but that the effect depends upon the structure and hydrophobicity
    • 

    corecore