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Review

Advances in methods for tRNA sequencing and
quantification

Nigam H. Padhiar,1 Upendra Katneni,1 Anton A. Komar,2 Yuri Motorin,3,* and Chava Kimchi-Sarfaty1,*

In thepast decade tRNAsequencing (tRNA-seq) has attracted considerable attention
as an important tool for the development of novel approaches to quantify highlymod-
ified tRNA species and to propel tRNA research aimed at understanding the cellular
physiology and disease and development of tRNA-based therapeutics. Many
methods are available to quantify tRNA abundance while accounting for modifica-
tions and tRNA charging/acylation. Advances in both library preparation methods
and bioinformatic workflows have enabled developments in next-generation
sequencing (NGS) workflows. Other approaches forgo NGS applications in favor of
hybridization-based approaches. In this review we provide a brief comparative over-
viewof various tRNAquantification approaches, focusing on the advantages anddis-
advantages of these methods, which together facilitate reliable tRNA quantification.

The importance and challenges of tRNA evaluation
tRNAs are implicated in many processes, including translation [1], amino acid metabolism [2,3], me-
tabolite synthesis [4], priming the reverse transcription (RT) of viral RNAs [5], and tRNA cleavage
leading to the production of regulatory noncoding RNAs termed tRNA-derived small RNAs (tsRNAs)
[6]. Given itsmultifaceted involvement in cellular physiology, tRNA dysregulation affecting their abun-
dance and functionmay lead to various human diseases including different types of cancers [7], leu-
kodystrophy [8], cell-cycle arrest [9], and awide array of diseases related to cellular energetics [7], as
well to as diseases of other species such as the deadly rice fungusMagnaporthe oryzae [10]. Thus,
methods allowing reliable and accurate tRNA quantification are becoming of immense importance
for understanding both the normal functioning of the cell and various pathophysiological conditions.

Tools for the quantification of tRNAs can be broadly divided into NGS-based approaches and non-
NGS approaches (mostly hybridization). Regardless of the approach, there aremany challenges for
the accurate assessment of tRNA levels, given the distinctive highly conserved secondary structure
and chemical modifications of tRNA molecules. tRNAs are heavily modified, and feature several
base and ribose methylations, as well as pseudouridine (ψ) and other complex modifications
[11]. These RNA modifications can lead to premature RT stops in the process of complementary
DNA (cDNA) synthesis [12,13] in NGS applications and can also hinder hybridization in hybridiza-
tion-based approaches as a result of impaired Watson–Crick base-pairing with oligonucleotide
probes [14,15]. In addition, owing to the variable nature of modifications and the overall diversity
of highly similar but still unique tRNA species, which can exceed 400 unique molecules in humans
[16], special considerations must be taken into account during quantification to ensure accuracy in
differentiating between isodecoders or in mapping to the genome.

In the following we review select protocols in the tRNA quantification spacewith a particular focus on
NGS approaches, and discuss the associated challenges. These include demethylase-thermostable
group II intron RT tRNA sequencing (DM-TGIRT-seq) [17], AlkB-facilitated RNA methylation se-
quencing (ARM-seq) [18], Hydro-tRNAseq [19], Y-shaped adapter-ligatedmature tRNA sequencing
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(YAMAT-seq) [20], long hairpin oligonucleotide-based tRNA high-throughput sequencing (LOTTE-
tRNAseq) [21], quantitative mature tRNA sequencing (QuantM-tRNAseq) [12], modification-
induced misincorporation tRNA sequencing (mim-tRNAseq) [16], Nano-tRNAseq [22], and
adapter-ligated libraries of tRNA-derived sequences (ALL-tRNAseq) [23].

Different library preparation methods in tRNA-seq
In the following we present an overview of library preparation strategies in tRNA-seq; these are
summarized in Figure 1 (Key figure).

Unbiased tRNA extraction
The first essential step for tRNA quantification analysis is the isolation of RNA. Depending on the
properties of the biological material, extraction of total RNA can be achieved either by general ex-
traction protocols, such as phenol extraction used for bacteria or TRIzolTM extraction that is com-
mon for higher eukaryotic cells in culture [24]. Difficult-to-disrupt cells such as Saccharomyces
cerevisiae require harsher procedures such as acid phenol extraction [25]. For many bacterial
cells, simple TRIzol extraction often results in a highly enriched tRNA fraction [26].

Few selected protocols discussed in this review have a specific focus on tRNA in the RNA isolation
step. DM-TGIRT-seq, ARM-seq, and ALL-tRNAseq utilize themirVanaTMmiRNA isolation kit which
is centered on an efficient glass fiber filter (GFF)-based approach. Other protocols initially rely on
common TRIzolTM or TRIsureTM extraction and later employ specific tRNA isolation techniques.

Pretreatment of input RNA
An appropriate library preparation protocol plays an essential role in preparing input RNA for tRNA
quantification by deep sequencing. In some protocols the input RNA is treated before proceeding
with adapter ligation. Hydro-tRNAseq uniquely employs limited alkaline hydrolysis of the purified
tRNA to isolate fragments of 19–35 nt that will have a less complex secondary structure and fewer
modifications that could induce RT stops [19]. However, fragments carrying RT hindering modifica-
tions can be overlooked in this approach owing to generation of short abortive cDNAs (see later)
[14,16]. DM-TGIRT-seq, ALL-tRNAseq, and ARM-seq all incorporate demethylation of input tRNA
as key steps in their protocols, and the first two use a combination of wild-type Escherichia coli alkyl-
ation B (wtAlkB) and D135Smutant AlkB, and the latter only uses wtAlkB. This mutant AlkB is able to
demethylate N2,N2-dimethylguanosine (m2,2G), which is not an ideal substrate for wtAlkB [27]. Alto-
gether, these modifications improve RT read-through if a highly processive enzyme such as
MarathonRT or TGIRT is not used, but will eliminate the potential to detect such tRNA modifications
through misincorporation or RT-stop analysis, unless an untreated sample is also sequenced for
comparison (which the authors of DM-TGIRT-seq and ARM-seq did). These protocols can also intro-
duce biased representation since only a subset of suchmodified residues are effectively removed [28].

Adapter ligation strategies
As a result of thematuration pathways of tRNAs, theymostly have 5′-P and 3′-OH extremities [29]
that are directly compatible with ligation of adapters required for sequencing. It is important to
note that efficient ligation to 3′-OH extremities requires preliminary deacylation of tRNAs because
the presence of an attached amino acid at the tRNA 3′-CCA end compromises the ligation of
adapter [30]. The adapter ligation protocols in our cohort can be split into four broad categories,
as follows: strategy A, separate ligation of 3′ and 5′ adapters; strategy B, 3′ adapter ligation
followed by RT, which is then followed by single-stranded (ss)DNA ligation of DNA oligonucleotide
to the 3′ extremity of the cDNA after RT; strategy C, 3′ adapter ligation followed by circularization
of the cDNA; and strategy D, incorporation of both 5′ and 3′ adapters (and priming sites) into a
double-stranded oligonucleotide (Figure 2).
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ALL-tRNAseq, Hydro-tRNAseq, and ARM-seq employ strategy A; LOTTE-seq uses strategy B;
DM-TGIRT-seq, mim-tRNAseq, and QuantM-tRNAseq use strategy C (although DM-TGIRT-
seq does not use ligation enzymes, its overall protocol best fits with this strategy); YAMAT-seq
uses strategy D; and Nano-tRNAseq uses a combination of strategies B and D because it includes
a second primer on a double-stranded oligonucleotide and a final adapter ligation after the RT step.
Within these broad categorizations, there are differences in the choice of ligation enzyme, adapter
construction, and RT enzyme, the details of which can be found in Figures 1 and 2.

Key figure

Step-by-step library preparation methods for nine tRNA-seq protocols

TrendsTrends inin GeneticsGenetics

Figure 1. The symbols used to denote gel purification andCircLigase circularization are given in the key (top left). Abbreviations:
ALL-tRNAseq, adapter-ligated libraries of tRNA-derived sequences; ARM-seq, AlkB-facilitated RNA methylation sequencing;
DM-TGIRT-seq, demethylase-thermostable group II intron RT tRNA sequencing; DNL, T4 DNA ligase; HF, high fidelity;
LOTTE-seq, long hairpin oligonucleotide-based tRNA high-throughput sequencing; mim-tRNAseq, modification-induced
misincorporation tRNA sequencing; ONT, Oxford Nanopore Technology; QuantM-tRNA seq, quantitative mature tRNA
sequencing; RNL1, RNA ligase 1; RNL2tr, truncated RNA ligase 2; RNL2trkq, truncated K227Q mutant RNA ligase 2; RT,
reverse transcriptase; wtAlkB, wild-type alkylation B; YAMAT-seq, Y-shaped adapter-ligated mature tRNA sequencing.
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In the vast majority of available protocols, the 3′ DNA adapter is 5′-pre-adenylated (avoiding the
necessity of ATP for ligation) and 3′-blocked to avoid the formation of concatemers. Key enzymes
for 3′ adapter ligation include T4 RNA ligase 2 (RNL2), truncated T4 RNA ligase 2 (RNL2tr), and
truncated K227Q mutant T4 RNA ligase 2 (RNL2trkq) – the truncated form has increased affinity
for joining the 5′ ends of adenylated adapters to the 3′ ends of RNA, and the mutated form further
reduces unwanted ligation side products [31]. LOTTE-seq and Nano-tRNAseq are the only proto-
cols to make use of DNA ligase (DNL), and the first uses it for ligation of a DNA hairpin adapter to

TrendsTrends inin GeneticsGenetics

Figure 2. Overview of adapter ligation strategies for each protocol (DM-TGIRT-seq is also included, even though
adapters are not technically ligated in this method). In multistep ligation strategies, the steps are numbered in red font.
(Strategies A–D) Overall strategies of adapter ligation: (Strategy A) separate ligation of 3′ and 5′ adapters; (Strategy B)
3′ adapter ligation followed by reverse transcription (RT), which is then followed by single-stranded DNA ligation of DNA
oligonucleotides to the 3′ extremities of the cDNA; (Strategy C) 3′ adapter ligation followed by circularization of cDNA; and
(Strategy D) inclusion of a second primer binding site into the double-stranded oligonucleotide. Abbreviations: ALL-tRNAseq,
adapter-ligated libraries of tRNA-derived sequences; ARM-seq, AlkB-facilitated RNA methylation sequencing; DM-TGIRT-
seq, demethylase-thermostable group II intron RT tRNA sequencing; DNL, DNA ligase; dRNA, direct RNA sequencing;
LOTTE-seq, long hairpin oligonucleotide-based tRNA high-throughput sequencing; mim-tRNAseq, modification-induced
misincorporation tRNA sequencing; ONT, Oxford Nanopore Technology; QuantM-tRNA seq, quantitative mature tRNA
sequencing; RNL1, RNA ligase 1; RNL2, RNA ligase 2; SR adapter, single-read adapter; YAMAT-seq, Y-shaped adapter-
ligated mature tRNA sequencing.
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tRNA, whereas the second uses it to anneal a double-stranded (ds)DNA oligonucleotide containing
Oxford Nanopore Technology (ONT) RT adapters to a RNA–DNA hybrid Y-shaped splint adapter
(which itself was originally ligated with RNL2). DNL is more specific than RNL, thus reducing the
production of undesirable ligation products [32]. A commonality in the protocols using double-
stranded adapter ligation strategies (all of which are grouped in different strategies) – YAMAT-
seq, QuantM-tRNAseq, Nano-tRNAseq, and LOTTE-seq – is the use of ribonucleotide and/or
deoxyribonucleotide overhangs to better hybridize with mature tRNA species. ALL-tRNAseq,
while not using double-stranded ligation, uniquely employs a randomized 4 nt 5′ end for its 3′
adapter, which could aid in ligation to tRNA fragments (and not exclusively tomature 3′-CCA tRNAs).

Adapter ligation to tRNA 5′ ends, which is only carried out as a separate step for protocols that employ
strategy A, is typically conducted by T4 RNA ligase 1 (RNL1). RNL1 is well suited to ligating ssRNA
molecules, which is the structure of the 5′ adapter [33]. Similarly to its 3′ adapter, ALL-tRNAseq also
has a randomized tetranucleotide at the 3′ end of its 5′ adapter, for the same purpose as above.

CircLigase circularization (strategy C) and second adapter ligation after RT (strategy B) are alike in
that the 3′ end of cDNA is only ligated to an adapter after RT, which has the benefit of enabling
incomplete transcription products (as generated by RT stops) to be included in the final library
preparation. Notably, mim-tRNAseq and QuantM-tRNAseq both use CircLigase I, whereas
DM-TGIRT-seq uses CircLigase II. In at least one study, CircLigase I was found to have higher
circularization efficiency than CircLigase II [34]. A different study compared circularization strate-
gies with standard TruSeqTM small RNA preparation, and found that higher numbers of unique
reads were observed – this study employed only CircLigase II [35].

Reverse transcription
Since the RT step is almost inevitable in any standard protocol for sequencing library preparation,
the presence of modified nucleotides in tRNAs is a well-recognized source of strong bias towards
over-representation of less extensively modified tRNA species [22,36]. Moreover, although some
tRNA modifications are silent in the RT reaction and only mildly affect cDNA synthesis [such as
5-methylcytosine (m5C), 7-methylguanosine (m7G), ψ, and others that do not alter Watson–Crick
base-pairing], other tRNA modifications either pause or simply arrest RT primer extension. These
are particularly frequent in eukaryotic tRNAs [N1-methyladenosine (m1A), m2,2G, 3-methylcytosine
(m3C)] or are common to all living species [m1G, N6-isopentenyl adenosine (i6A)/2-methyl-thio-N6-
isopentenyladenosine (ms2i6A), etc.] [14,37,38]. When such nucleotides are encountered by the
RT enzyme, the cDNA extension is either aborted or the enzyme passes through with possible in-
corporation of a mismatched nucleotide in the cDNA. This RT signature depends not only on the
properties of the enzyme [39] but also on the nature of the RT-arresting nucleotide, its sequence
context, and the composition of the reaction buffer (namely Mg2+/Mn2+ ions) [14,40,41].

The TGIRT enzyme, when included in sequencing library preparation, can facilitate readthrough of
tRNA modifications including a subset of Watson–Crick base-pairing modifications [17,42]. In
mim-tRNAseq, modifications to the TGIRT reaction conditions were made to further improve its
efficiency and reduce the number of premature RT stops [16]. In the recently developed ALL-
tRNAseq method, a highly processive group II intron maturase MarathonRT was used which
was touted to overperform TGIRT for the sequencing of long and structured RNAs.

Computational methods in tRNA sequencing
In general, tRNA-seq bioinformatic workflows begin with raw FASTQ files, proceed with some
preprocessing steps, include curation of a reference, and finally align reads to references. A
detailed overview of these steps in each protocol is given in Table 1.
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Preprocessing of raw FASTQ reads
Raw FASTQ reads typically undergo some type of adapter trimming before moving forward in a
tRNA-seq analysis pipeline, although the specific tools and criteria used can vary. In summary,
the tools used were Trimmomatic [43] (DM-TGIRT-seq), cutadapt [44] (Hydro-tRNAseq,
QuantM-tRNAseq, mim-tRNAseq), BBDuk (LOTTE-seq), a custom script entitled Seqprep
(ARM-seq), and sRNAbench (All-tRNAseq). YAMAT-seq and Nano-tRNAseq did not specify an
adapter trimming or preprocessing protocol. Two publications, which focused on the release of
'fastp' [45] and 'Atria' [46], completed a comparison of two of the aforementioned packages –

Trimmomatic and cutadapt (which is used within a wrapper script entitled 'Trim Galore'), along-
side many other unmentioned packages. Although cutadapt was found to be faster in both stud-
ies, it was reported to have a higher mismatch rate in the fastp study, and a much lower %PPV
(positive predictive value) in the Atria study: 40.05% compared with 99.29%.

Perhaps more important than the choice of tool is how it is applied and whether that application is
justified. Some studies have pointed out that adapter trimming is not necessary in many cases and
should be appliedwith caution, although these do notmention small-RNA-seq data (which are often
considered to include tRNA-seq data) specifically. However, studies which do focus on small RNA
adapter trimming emphasize its importance and some include a recommended lower limit of inclu-
sion for post-trimmed reads of ~15 nt [47,48]. Indeed, this is the lower limit followed by two of four
tRNA-seq studies which offer detailed information on their adapter trimming protocols – namely
DM-TGIRT-seq and ARM-seq. By contrast, mim-tRNAseq is more permissive, and decreases
this lower limit to 10 nt. LOTTE-seq is the most restrictive, and has a lower limit of 50 nt.

Reference curation
Before beginning the alignment of reads it is necessary to curate a suitable reference, which can
involve varying levels of curation and editing of publicly available genomic data. All the protocols
mentioned in this study rely on either a tRNA reference obtained from the application of
tRNAscan-SE [49] to a genome or from the GtRNAdb database, which itself is derived from
tRNAscan-SE results.

Some protocols have additional references which are used before a mature-tRNA reference –

ARM-seq, YAMAT-seq, LOTTE-seq all include the entire human genome as an additional refer-
ence, and the latter takes the step of softmasking all tRNA sequences within this genome and
concatenating the reference with a pre-tRNA reference. This has the benefit of offering an oppor-
tunity to map non-tRNA reads.

Mim-tRNAseq alone incorporates MODOMICS [11] data to annotate their initial reference with
modification information.

Alignment as performed by different tRNA-seq protocols
Earlier protocols employed a relatively uncomplicated approach to sequence alignment, and DM-
TGIRT-seq, ARM-seq, and QuantM-tRNAseq used Bowtie2 [50] with slight alterations for mis-
match tolerance. Similarly, YAMAT-seq has a straightforward mapping approach with SHRiMP2
[51], and specifies a 10% mismatch tolerance. ALL-tRNAseq, Hydro-tRNAseq, and LOTTE-seq
all employ a hierarchical mapping approach using Bowtie2, the Burrows–Wheeler aligner (BWA),
and Segemehl [52], respectively. In the case of the first two, second-round mapping was modi-
fied with an increased mismatch tolerance to recover tRNA reads with more mismatches (mod-
ifications). The latter attempted to map first to pre-tRNA and a tRNA-masked genome,
followed by mapping to mature tRNA sequences. This step has the benefit of allowing a user
to account for non-tRNA reads and potentially assess any contamination within a sample.
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Nano-tRNAseq, despite settling on a relatively straightforward single-step mapping approach
with BWA, did take the additional step of testing various mapping parameters to optimize their
alignment. Finally, mim-tRNA-seq, which uses GSNAP [53] for its aligner, utilizes its unique func-
tionality as an SNP-aware aligner to allow mismatch tolerance at sites specified by MODOMICS
data, with an additional 10% mismatch tolerance outside these specific sites. These additional
mismatches can be used to add to the library of known tRNA modifications, which can subse-
quently be used in a 'remapping' step that accounts for previously unknown modification sites.
The protocol then applies a unique deconvolution step that allows reads to be separated from
their parent cluster into individual tRNA species (if possible).

Hybridization-based approaches to tRNA-seq
Early methods of tRNA quantitation included separation of tRNAs by 2D gel electrophoresis,
chromatography, and quantitation by northern blotting [54,55]. Although northern blotting is a
low-throughput technique that is cumbersome to perform and requires highly specific probes,
it remains a reliable technique for tRNA quantitation and is frequently used to validate newly de-
veloped techniques [14,16,56].

tRNAmicroarrays were the first high-throughput methods developed for tRNA quantitation. These
involve hybridization between tRNAs and custom designed sequence-specific DNA probes and
detection of binding by either fluorescence or phosphor imaging [57,58].While offering an improve-
ment over the earlier low-throughput methods, tRNA microarrays have some limitations that are
specific to microarray platforms; these include (i) low dynamic range and sensitivity compared
with NGS-based methodologies, (ii) low resolution – tRNA microarrays require at least eight nucle-
otide differences to prevent cross-hybridization, and (iii) the potential requirement for custom
probes to detect target species [14]. Further, tRNAmicroarray protocols that do not include an am-
plification step will be free from amplification bias; however, they routinely require a substantially
higher quantity of the starting material (total RNA or tRNA) in comparison to NGS approaches.
Nevertheless, microarray-based approaches continue to be developed further [56,59].

OTTER (oligonucleotide-directed three-prime terminal extension of RNA) [60] and quantitation by
microscale thermophoresis (MST) [61] are recently developed hybridization-based tRNA quanti-
tation methods. OTTER employs a reverse primer extension method in which a DNA oligonucle-
otide specific for an isodecoder/isoacceptor tRNA is hybridized to the 3′-terminal regions of
tRNA, and the tRNA/oligonucleotide hybrid is then subjected to DNA polymerization to yield a
fluorescent tRNA derivative with a 3′-terminal tetramethylrhodamine-dUTP. Quantitation of fluo-
rescence is used to determine the absolute levels of the target tRNA. While OTTER allows rela-
tively faster quantitation of individual target tRNAs, it is a low-throughput method that relies on
the sequence variation in the 3′ region of tRNAs [60]. Quantitation by MST involves hybridization
between a constant amount of fluorescently labeled cDNA probes (FCPs) with increasing
amounts of denatured tRNAs and quantitation of fluorescence to monitor the thermal mobility
of free and tRNA-bound probe. Calculation of the concentration of RNA required to hybridize
to 50% of the FCP will yield information on the absolute quantity of the tRNAs in the sample
[61]. The advantages and disadvantages of tRNA quantitation by MST are largely comparable
with OTTER. Overall, hybridization-based tRNA quantitation methods are hampered by low res-
olution and dynamic range, the requirement for a high quantity of samples, or low throughput, and
are being increasingly replaced by NGS approaches.

tsRNAs and their profiling
tsRNAs, which are a product of tRNA cleavage, have been demonstrated to play a role in mul-
tiple biological processes including immune responses, metabolic disorders, and malignancies
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by regulating gene expression and translation [62]. Therefore, accurate identification and quan-
titation of tsRNAs is critical for understanding their roles in normal physiology and disease
states.

tsRNAs are broadly categorized into two types: (i) tRNA-derived stress-induced RNAs
(tiRNAs), 31–40 nt in length, that result from cleavage of mature tRNA at the anticodon
loop by the RNase angiogenin (ANG) under stress conditions, and (ii) tRNA-derived frag-
ments (tRFs), 14–30 nt in length, that are generated through cleavage of pre- or mature
tRNAs into tRNA loops by various RNases [63]. The tRNA modifications that are present in
the parental tRNAs modulate their cleavage by RNases and are inherited by tsRNAs. Differ-
ent RNases involved in the generation of tRFs also result in distinct termini including 5′-OH,
3′-P, and 2′,3′-cyclic phosphate (2′3′-cP) modifications [64]. These tRNA modifications and
distinct termini interfere with RT read-through and adapter ligation steps, respectively, and
affect the identification and quantitation of tsRNAs. Various methods including PANDORA-
seq [65], CPA-Seq [66], and ARM-Seq [18] have addressed these limitations by including
(i) T4 polynucleotide kinase (T4PNK) to phosphorylate the 5′-OH ends and to convert the
3′-P or 2′3′-cP into 3′-OH, and (ii) AlkB to remove methylation modifications to facilitate RT
read-through. In addition, highly processive RT enzymes such as TGIRT and MarathonRT
can also be introduced into protocols to facilitate RT read-through and also facilitate the
identification of tRNA modifications [23,64].

Validation methods in tRNA quantification and characterization
We focus here on methods to evaluate ligation efficiency, modification data, and read counts. A
full summary is given in Table 2.

Ligation efficiency
Ligation efficiency is typically understood to be the proportion of input tRNA that is ligated with
adapters. Of the five studies in our cohort which reported ligation efficiency, only one reported
this value for each adapter independently – YAMAT-seq reported a 22.8% efficiency for the 5′
adapter and a 91.8% efficiency for the 3′ adapter. This reduced 5′ adapter ligation efficiency is
consistent with literature reports about the difficulty of 5′ adapter ligation in small-RNA-seq [67].
LOTTE-seq circumvents this problem of 5′-end ligation to RNA by ligating the second adapter
after cDNA synthesis, which occurs after 3′ hairpin adapter ligation with DNL – they report a liga-
tion efficiency with DNL of 80–90%. They also discuss the potential of a unique molecular identi-
fier (UMI) sequence in their adapter; in principle this could be included in other tRNA adapter
ligation strategies as well (and is already included in many other low-input RNA-seq library prep-
arations [68]), which would allow quantification of ligation bias or overamplification of artefacts
[69]. QuantM-tRNAseq, like LOTTE-seq, implements a double-stranded adapter strategy,
although it reports a higher adapter ligation efficiency of 96% using RNL2; however, given the
ability of RNL2 to ligate a wider variety of substrates [70], and experiments performed by the
LOTTE-seq authors showing the ability of RNL2 to ligate tRNAs missing a 3′-CCA, it is possible
that this estimation of ligation efficiency in QuantM-tRNAseq includes tRNA lacking 3′-CCA.
Mim-tRNAseq uses a relatively straightforward strategy of 3′ adapter ligation with RNL2 followed
by circularization with CircLigase – this resulted in 89–95% ligation efficiency. However, given
the reliance on RNL2, this could have the same issue as QuantM-tRNAseq. The final protocol
with reported ligation efficiency, Nano-tRNAseq, relies on a multistep protocol involving both
RNL2 and DNL, resulting in a final ligation efficiency that we approximated at ~60% based on
extended data (Figure 2a,b in [22]). Optimization of reaction conditions showed that
increased reaction time and the addition of polyethylene glycol PEG8000 increase ligation
efficiency.
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Comparison with non-NGS methods and other validation
An important, albeit imperfect method for validating tRNA read-count data remains the aforemen-
tioned hybridization approach. This approach was used by five protocols, but in all cases the
number of probes utilized (QuantM-tRNAseq employed the greatest number of probes) were
far outnumbered by the actual number of tRNA species in the sample owing to the low-
throughput nature of the technique. However, in all the cases a good agreement between the hy-
bridization- and NGS-derived data was achieved.

Primer extension [71] is another non-NGS method that can be used for validation, as it can be
used to identify RT stops. If RT stops are identified at locations corresponding to the NGS output,
then this can serve as a support for tRNAmodification analysis. This method is featured in three of
the protocols, most prominently in ARM-seq.

Mass spectrometry and liquid chromatography (LC-MS) techniques have been used previously
many times to detect RNA modifications [72], including in two of the protocols discussed in this
paper (DM-TGIRT-seq and Nano-tRNAseq). This can be used to confirm the presence of key
tRNA modifications, but (in the methods used in these two protocols) does not give their location
in the sequence. Newer MS techniques are able to perform de novo tRNA-seq and give modifica-
tion information – this is known as MS ladder complementation sequencing (MLC-seq), and is a
very promising area of emerging research. It requires further development to achieve higher
throughput, but is notable for its high precision [73,74].

A variety of other methods can be used to validate tRNA-seq data. Two protocols (mim-tRNAseq
and Nano-tRNAseq) employ a mutant biological sample with a known absence of modified
tRNA to determine whether this can be detected in a tRNA-seq protocol when compared
with the wild type. Other methods compare their results with those derived from more conven-
tional protocols to observe whether their results contain greater quantities of tRNA reads or
better RT throughput.

It is important to include some discussion of several challenges associated with direct RNA
Nanopore sequencing of tRNAs, which is a very promising technique, but likely requires further
validation and troubleshooting to achieve its greatest potential. First, tRNAs are small (<100 nt
in length), and this size is not optimal for Nanopore sequencing. Extra adapters ligated to
tRNAs can help, but parameters for standard Nanopore basecallers should be adapted to the
very short read size. Second, Nanopore sequencing has a low Q-score, ranging from 7 to 12
on average. This low accuracy is not critical for analysis of very long mRNA reads, but becomes
crucial for short tRNA molecules, specifically for precise mapping to reference tRNAs. Moreover,
a high proportion of RNA modifications in tRNA molecules further increases the error rate, since
many RNA modifications are known to affect the ion-current profile and thus basecalling preci-
sion. In addition, these basecalling error events may show up not only at the position of modifica-
tion itself but also at the flanking residues. Altogether, such basecalling errors and the low quality
of the sequencing data tremendously affect alignment accuracy, in particular for very complex
tRNA pools in higher eukaryotes.

Important biological questions associated with tRNA and costs
At the center of any analysis involving tRNA are the biological questions that a researcher is
trying to address – this can include relative tRNA quantitation (is there more of a particular
tRNA in sample X than in sample Y), absolute tRNA quantitation (is there more of tRNA A
than tRNA B in the same sample), quantitation of tRNA charging, and analysis of tRNA
modifications.
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Of the protocols included in this study, all are capable to varying extents of both relative and ab-
solute tRNA quantification, although their bioinformatic analyses do not all offer isodecoder-level
resolution. At the simplest level, all that is required to obtain isodecoder counts is to map reads to
a tRNA genome containing individual isodecoders – in practice, this can lead to excessive
multimapping, and a dedicated protocol is therefore ideal for handling isodecoders. Mim-tRNA-
seq is the protocol with the most effort dedicated to resolving highly similar isodecoders through
its dedicated bioinformatic pipeline which is conveniently available as a conda package. This
same protocol is the only one in this paper that offers insight into tRNA charging; however, it
does require some important wet laboratory steps, such as isolating RNA under acidic conditions
and spike-in addition (for an internal control), as well as the aforementioned conda package for
analysis of 3′-CCA quantitation [75]. If one is interested in modification data, then nearly all of
the protocols can offer this information, although this will again depend somewhat on the ability
of each protocol to provide isodecoder resolution. ALL-tRNAseq, with its use of the highly
processive MarathonRT, might miss some modification information, although the use of this
same enzyme enables better collection of full-length tRNA reads.

Any discussion of selecting a protocol to meet research needs should also be accompanied by a
cost analysis. In Table 3 we present cost estimates for steps that are common to most of the pro-
tocols in this paper. However, it is important to consider that this does not include labor or time
costs, and can vary greatly depending on the (often changing) prices of reagents that are specific
to individual protocols. As an example, the protocol for mim-tRNAseq includes four gel selection
steps, whereas ALL-tRNAseq includes only one – this difference can result in the former taking
several more days to complete.

A researcher should attempt to perform a cost/benefit analysis when deciding on an appropriate
protocol and, importantly, should also feel free to combine pieces of different protocols to serve
their specific needs.

Table 3. Typical costs of tRNA sequencing

Step Option Cost (USD) per sample processed

Total RNA
extraction

Phenol $1–2

TRIzol $2–3

Commercial kit $5–15

Isolation of tRNA
fraction

Gel purification $0.5–5 (home-made/precast gels)

Spin column $5–10

Library
preparation

'Simple' custom protocol Truncated K227Q mutant T4 ligase 2, $8
App-oligonucleotide, variable ~$10
RT enzyme, $5–15
RNA ligase, $1–2
RNA oligonucleotides, variable $5
PCR oligonucleotides, $5
Total, $35–50

'Elaborate' custom protocol Very variable, depends on the cost of the RNA–DNA
hybrid oligonucleotides
Estimate $50–100

Commercial kit $65–75

Sequencing cost Single-end SR100 sequencing
(Illumina NextSeq)
25 million raw reads
coverage/sample

$90 (P2 100 cycles kit)

Total cost Depending on the options used ~$130–225
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Concluding remarks
tRNA-seq is an evolving field that has been marked by several notable advances in recent years,
both in the generation of tRNA-enriched libraries as well as in bioinformatic analysis of tRNA-seq
reads. However, it is also marked by a lack of a single definitive approach for quantifying and an-
alyzing the molecule of interest, and each protocol employs different adapter ligation strategies,
varied orders of operation, and heterogeneous bioinformatic pipelines. Even though we have
attempted to include as many protocols as possible within the current study to cover a wide
range of techniques, it is important to note that additional protocols are available that can offer
novel methods – for example, preceding Nano-tRNAseq was another study that examined direct
tRNA-seq with Nanopore technology [76], as well as a tRNA study which developed methods to
analyze tRNA expression in plants [36]. Comparing results between different approaches is chal-
lenging – it is difficult to ascribe differing outputs to any particular difference between protocols
because the protocols are so distinct. Future efforts should attempt to compare the wide variety
of available tRNA-seq strategies in a single study such that inefficiencies can be eliminated and
more reliable quantification of tRNA can be performed. New studies should also attempt to con-
tinuously monitor the field for new developments to ensure that analysis strategies are not out-
dated – for example, the recent release of tModBase [77] could help in expanding modification-
aware alignment strategies in the future. We have outlined some current unresolved issues (see
Outstanding questions) which aim to address potential future directions in tRNA research.
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Outstanding questions
Which adapter ligation strategy results
in the least amount of bias while
giving the highest possible yield of
tRNA?

How can we balance the processivity
of RT enzymes – which offers read-
through of modified sites and allows
more complete sequencing – with the
additional information offered by
modification-induced mismatch signa-
tures and RT stops? Which RT offers
the best balance of these concepts?

While many breakthroughs have been
made in the field of modification-
aware sequencing, there is still the
issue of 'RT-silent' modifications,
such as ψ, which would not be de-
tected by current tRNA-seq protocols;
what steps should be undertaken to
expand the range of modifications
that can be detected?

PCR amplification is still an important
component of non-ONT techniques,
but bias can be introduced at this
stage – can UMI adapters be incorpo-
rated into additional protocols beyond
LOTTE-seq so that this bias can be ac-
counted for?
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