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Analysis of 3.5 million SARS-CoV-2 
sequences reveals unique mutational trends 
with consistent nucleotide and codon 
frequencies
Sarah E. Fumagalli1†, Nigam H. Padhiar1†, Douglas Meyer1†, Upendra Katneni1, Haim Bar2, Michael DiCuccio3, 
Anton A. Komar4 and Chava Kimchi‑Sarfaty1* 

Abstract 

Background Since the onset of the SARS‑CoV‑2 pandemic, bioinformatic analyses have been performed to under‑
stand the nucleotide and synonymous codon usage features and mutational patterns of the virus. However, compara‑
tively few have attempted to perform such analyses on a considerably large cohort of viral genomes while organizing 
the plethora of available sequence data for a month‑by‑month analysis to observe changes over time. Here, we aimed 
to perform sequence composition and mutation analysis of SARS‑CoV‑2, separating sequences by gene, clade, and 
timepoints, and contrast the mutational profile of SARS‑CoV‑2 to other comparable RNA viruses.

Methods Using a cleaned, filtered, and pre‑aligned dataset of over 3.5 million sequences downloaded from the 
GISAID database, we computed nucleotide and codon usage statistics, including calculation of relative synonymous 
codon usage values. We then calculated codon adaptation index (CAI) changes and a nonsynonymous/synonymous 
mutation ratio (dN/dS) over time for our dataset. Finally, we compiled information on the types of mutations occur‑
ring for SARS‑CoV‑2 and other comparable RNA viruses, and generated heatmaps showing codon and nucleotide 
composition at high entropy positions along the Spike sequence.

Results We show that nucleotide and codon usage metrics remain relatively consistent over the 32‑month span, 
though there are significant differences between clades within each gene at various timepoints. CAI and dN/dS 
values vary substantially between different timepoints and different genes, with Spike gene on average showing both 
the highest CAI and dN/dS values. Mutational analysis showed that SARS‑CoV‑2 Spike has a higher proportion of non‑
synonymous mutations than analogous genes in other RNA viruses, with nonsynonymous mutations outnumbering 
synonymous ones by up to 20:1. However, at several specific positions, synonymous mutations were overwhelmingly 
predominant.

Conclusions Our multifaceted analysis covering both the composition and mutation signature of SARS‑CoV‑2 gives 
valuable insight into the nucleotide frequency and codon usage heterogeneity of SARS‑CoV‑2 over time, and its 
unique mutational profile compared to other RNA viruses.
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Background
Since the emergence in late 2019, the novel severe acute 
respiratory syndrome coronavirus 2 (SARS-CoV-2) has 
spread globally and caused the coronavirus disease 2019 
(COVID-19) pandemic with very serious medical seque-
lae for many individuals [1, 2]. Rapid development and 
introduction of vaccines against SARS-CoV-2 within a 
year, by late 2020, has contributed to significantly low-
ering the transmission, severity of illness and mortality 
from COVID-19 [3]. Despite this unprecedented effort, 
SARS-CoV-2 continued to mutate and evolve resulting 
in the emergence of new strains and resulted in multi-
ple waves of new infections across the globe [4]. Specifi-
cally, the World Health Organization (WHO) designated 
5 strains—Alpha, Beta, Gamma, Delta, and Omicron 
as variants of concern (VOC) due to either increase in 
transmission, virulence, or escape from existing diag-
nostics, vaccine immunity, and therapeutics [5–7]. The 
continued emergence of SARS-CoV-2 strains with higher 
fitness suggests the need for continued monitoring of 
viral evolution and identification of features contributing 
to viral fitness.

Evaluation of nucleotide composition and synony-
mous codon usage bias of viral genomes is useful to 
understand viral genetic changes, immune evasion 
and its adaptation to host [8]. Degeneracy of genetic 
code, referring to the availability of 64 possible codons 
to code for 20 amino acids, allows a majority of amino 
acids to be encoded by more than one codon. These 
synonymous codons of an amino acid are not used uni-
formly and usage of some codons is preferred over oth-
ers, a phenomenon known as codon usage bias (CUB) 
[9]. CUB is primarily shaped by mutational and trans-
lational pressures which correlate with multiple factors 
including translation efficiency/fidelity (abundance of 
tRNAs), gene expression, location within genes, nucle-
otide composition, and mRNA/protein structure [10, 
11]. Relative synonymous codon usage (RSCU) [12] 
and codon adaptation index (CAI) [13] are a couple 
of metrics commonly used to measure CUB [14, 15]. 
Scaled ratio of nonsynonymous to synonymous vari-
ants, referred to as dN/dS, is often calculated in order 
to understand the direction and magnitude of selection 
at the molecular level [16]. However, interpretation of 
results from such analysis assumes that synonymous 
variants are neutral. A growing body of literature in 
the last 2 decades demonstrated that synonymous vari-
ants could affect expression and quality attributes of 

the encoded protein by multiple mechanisms at both 
transcriptional and translational levels through their 
effects on pre-mRNA splicing, mRNA structure/sta-
bility, miRNA binding, translation efficiency, and co-
translational folding [17]. Additionally, RNA structures 
play an important role in the translation and replication 
of RNA viruses, including SARS-CoV-2, and a selection 
pressure against synonymous variants in these func-
tional regions was reported [18]. Therefore, synony-
mous variants cannot be assumed neutral and careful 
interpretations of results is needed [19].

SARS-CoV-2 has a positive sense single strand RNA 
genome of ~ 30 kb in length [20, 21]. About 2/3 of the 
genome at 5′ end comprises of two overlapping read-
ing frames ORF1a and ORF1ab. The distal 1/3 of the 
genome encodes for 4 structural proteins: Spike (S), 
Envelope (E), Membrane (M), Nucleocapsid (N), and 
additional accessory proteins (ORF-3a, -3b, -6, -7a, -7b, 
-8, and -10). The Spike protein is a surface glycoprotein 
that is essential for viral attachment and entry in to 
host cells. M and E proteins are also located on the sur-
face of virion with functional roles in viral assembly and 
pathogenesis. The N protein is located within the viral 
capsid and is involved in viral RNA packaging. Similar 
to other coronaviruses, SARS-CoV-2 has an  AT rich 
genome (~ 62% AT and 38% GC content). T nucleotide 
is most used (~ 34%) followed by A (~ 28%), C (~ 20%), 
and G (18%) nucleotides. Subsequently, RSCU analysis 
showed that a majority of preferentially used codons 
in the SARS-CoV-2 genome are T or A ending while G 
and C ending codons predominated the less preferred 
ones [22]. Over a period of time, a significant increase 
in T usage with simultaneous decrease in C usage, pri-
marily through C—> T transitions mediated by the 
action of host cell APOBEC cytosine deaminases was 
reported [23]. A minimal, albeit significant decrease in 
the CAI values of SARS-CoV-2 genomes over time was 
reported. This decrease over time was reported to be a 
result of lower CAI values of later emergent strains like 
Alpha and Delta rather than decrease within strains. 
Interestingly, the latest VOC, Omicron was reported to 
have CAI higher than other VOC, but lower than the 
original Wuhan-Hu-1 strain [24].

Previous studies analyzed a limited number of 
sequences and strains over a short period of time. 
In this study, we sought to perform a variety of bio-
informatic analyses on the largest possible cohort 
of SARS-CoV-2 sequences for the entire timespan 
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of the COVID-19 pandemic. We analyzed 3,573,491 
sequences downloaded from GISAID, a substantially 
larger cohort than comparable analyses [24–27], by 
measuring nucleotide and codon frequencies, RSCU, 
and CAI over time separated by month and clade. 
Additionally, we analyzed dN/dS ratios for individual 
clades of SARS-CoV-2 and visualized the frequencies of 
synonymous and nonsynonymous mutations for Spike 
gene of SARS-CoV-2 Omicron and Delta clades, and 
analogous genes in Middle East Respiratory Syndrome 
Coronavirus (MERS-CoV), Influenza, and Dengue 
viruses. Altogether, these analyses showed changes in 
nucleotide and codon usage characteristics of SARS-
CoV-2 genome over time and revealed its unique muta-
tion pattern compared to some other RNA viruses.

Methods
Design of study
We started by calculating nucleotide and codon usage 
frequencies for all sequences, separated by gene, 
month, and clade. We then calculated RSCU over time 
with specific focus on codons that either had specific 
requirements (specialized translation factor, eIF5A) for 
translation/decoding (proline) or had particularly distinct 
RSCU values. We expanded these calculations to include 
CAI and dN/dS ratio, which respectively gave insight into 
viral similarity to the host and whether nonsynonymous 
mutations were favored. Finally, we visualized the synon-
ymous and nonsynonymous mutations for SARS-CoV-2 
with specially designed heatmaps, focusing on Omicron 
and Delta clades, and compared with those generated 
for Influenza, MERS-CoV, and Dengue sequences. Our 
approach is summarized in Fig. 1.

Data collection
The complete reference sequence for SARS-CoV-2 
(GISAID accession  EPI_ISL_402124; NCBI accession 
NC_045512.2), referred to as wild-type (WT) from here 
onwards and multiple sequence alignments (MSA) for 
about 10 million complete genome sequences of SARS-
CoV-2 isolates were downloaded from the GISAID 
SARS-CoV-2 datahub (accessed on August 21, 2022). 
We also downloaded the GISAID metadata file for finer 
details associated with each sample [28]. The reader can 
also interact with some of the metadata on the GISAID 
sister website CoVariants (https:// covar iants. org). This 
resource provides a breakdown of some of GISAID 
SARS-CoV-2 metadata, following each variant and 
some lineages over time via individual non-synonymous 
and synonymous mutations for each gene. This site also 
provides per country change in the frequencies of each 
variant, an estimated cases tracker, protein visualiza-
tion, and a table of shared variant mutations. The data 

we downloaded contains no duplicates or low-quality 
sequences (> 5% undefined bases); and we further fil-
tered out sequences that contained ambiguous characters 
other than A, T, G, and C.

The open reading frame (ORF) sequences of 12 genes 
(ORF1ab, S, ORF3a, ORF3b, E, M, ORF6, ORF7a, ORF7b, 
ORF8, N, and ORF10) were trimmed from each genomic 
sequence according to GISAID nucleotide locations and 
analyzed independently (the 12 genes do not overlap). 
For ease of comparison between the WT and subsequent 
gene sequences, any insertion found in the WT sequence 
was removed from all sequences (Fig. 1). Deletions found 
in subsequent sequences were kept. MSA gene sequences 
with minimal modification were used for counting syn-
onymous and nonsynonymous mutations, and for com-
parison to the number of mutations in other viruses. 
This modification introduces a duplication of the shared 
C nucleotide between nsp11 and nsp12 (frameshift of 
ORF1ab, nucleotide location—13,203) and applied to all 
SARS-CoV-2 sequences.

The MSA gene sequence data were split into clades 
as assigned by GISAID (Alpha (GRY), Beta/Mu (GH), 
Gamma/Lambda (GR), Delta (GK), and Omicron 
(GRA)), and then by collection date (by month spanning 
December 2019–July 2022). Collection date was cho-
sen over submission date (often several months apart) 
to better represent when a particular variant sequence 
existed. GISAID derived their clade nomenclature based 
on phylogenetic groupings [29]. Table 1 summarizes the 
resulting 3,573,491 filtered MSA sequences (from herein 
simply called SARS-CoV-2 sequences) broken down by 
clade and month. Of note, the chronology of the GISAID 
clades with their associated WHO labels (Alpha, Beta/
Mu, Omicron, etc.) do not line up perfectly with the 
chronology of the virus as outlined by the WHO—for 
example, GISAID grouped multiple sequences labeled  
“GRA/Omicron” as early as December 2019, even though 
Omicron probably did not emerge until December 2021 
per the WHO. To account for this, within Table  1 we 
highlighted in bold italic font the months for each clade 
that were both: (1) after the earliest detection date for 
that clade as defined by the WHO, and (2) had an ade-
quate number of sequences, arbitrarily set at 5000. We 
did this in order to rule out months which may have 
misclassified sequences, or which did not have enough 
sequences to provide meaningful data. The highlighted 
months were the focus of most of our analyses.

We obtained sequences of other RNA viruses to per-
form mutation comparisons, selected based on the 
number of available sequences and by the presence of 
an analogous protein to SARS-CoV-2 spike. Sequences 
of H1N1 (NCBI Accession NC_026433.1) and H3N2 
(NCBI Accession NC_007366.1) strains of Influenza, 

https://covariants.org
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Dengue 1 (NCBI Accession NP_722460.2) strain of Den-
gue virus, and MERS-CoV (NCBI Accession NC_019843) 
sequences were all downloaded from NCBI virus data-
base (accessed on September 15, 2022). Filters were 
applied to eliminate sequences containing ambiguous 
characters and those obtained from non-human hosts. 
Only coding sequences for proteins that were function-
ally similar to SARS-CoV-2 Spike were downloaded to 
facilitate ease of comparison. These include Hemagglu-
tinin (HA) for H1N1 and H3N2, Envelope (E) for Den-
gue 1, and Spike for MERS-CoV. HA has been shown to 
have antigenic sites and is primarily responsible for entry 
into the host cell [30]. E in Dengue is responsible for both 
virion assembly and merging the virus with host cells 
[31]. Spike in MERS-CoV is highly similar and closely 
related in function to Spike in SARS-CoV-2, enabling 

the virus to bind to cellular receptors and mediating cell 
entry [32].

Nucleotide and codon usage analysis
For each of the five clades across the 32  months, the 
nucleotide (A, T, C, G), purine (AG), pyrimidine (TC), 
adenine–thymine (AT), and guanine-cytosine (GC) fre-
quencies were calculated for each of the 12 SARS-CoV-2 
genes (listed earlier) independently. Gene sequences were 
then parsed into codons, and the codon and correspond-
ing amino acid (AA) frequencies were calculated for all 
clades at all time points.

Relative synonymous codon usage (RSCU) analysis
To assess CUB, RSCU was calculated as described previ-
ously [15, 33] for all clades across 32 months. An RSCU 

Fig. 1 Bioinformatics Workflow Diagram Showing Sequence of Data Collection, Processing, and Presentation
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value of 1 indicates lack of CUB for the specific codon. 
If codon usage is biased, the RSCU for at least one syn-
onymous codon of an amino acid will skew from one. We 
arbitrarily considered any RSCU value over 1.5 as ‘highly 
overrepresented’ and an RSCU value under 0.5 as ‘highly 
underrepresented’ [34, 35]. We only calculated RSCU 
for genes with > 1000 nucleotides (ORF1ab, Spike, and 
N gene) as it is less likely a codon is represented just by 
chance.

Codon adaptation index (CAI) analysis
We calculated CAI for the months highlighted in bold 
italic font in Table 1 using a comparable approach to that 

described previously [36, 37]. CAI values range from 0 to 
1 with a value of 1 indicating most bias to the reference 
(in this study, the reference is Homo sapiens).

dN/dS calculations
We calculated the dN/dS ratio as it changed over time for 
only the months highlighted in bold italic font in Table 1. 
dN/dS is well established in the literature as a metric 
applied to protein coding genes [38]. dN/dS is the ratio 
of nonsynonymous and synonymous mutations, adjusted 
for the number of nonsynonymous and synonymous 
sites. A value greater than 1 indicates that nonsynony-
mous changes are favored by selection, while a value less 

Table 1 Sequence Counts by Month and Clade

The numbers in bold italic represent those months which both (1) are after the date that the clade was first noted by the WHO and (2) contain over 5,000 sequences

Month Alpha Beta/Mu Gamma/Lambda Delta Omicron Month Total

19‑Dec 2 9 5 2 5 23

20‑Jan 77 162 111 33 53 436

20‑Feb 56 246 210 71 77 660

20‑Mar 155 9526 4705 178 260 14,824

20‑Apr 52 8377 7797 58 54 16,338

20‑May 17 5085 4748 28 12 9890

20‑Jun 16 5075 7371 7 16 12,485

20‑Jul 7 6362 12,014 5 9 18,397

20‑Aug 6 5480 11,240 16 12 16,754

20‑Sep 16 6824 8140 20 16 15,016

20‑Oct 65 8703 8449 20 4 17,241

20‑Nov 1426 14,171 10,442 6 – 26,045

20‑Dec 10,903 21,645 12,549 27 15 45,139

21‑Jan 36,946 30,750 18,350 117 32 86,195

21‑Feb 64,847 24,422 15,173 93 18 104,553

21‑Mar 130,982 24,750 23,150 597 14 179,493

21‑Apr 132,923 18,068 32,294 2810 27 186,122

21‑May 91,528 8342 33,667 17,588 18 151,143

21‑Jun 23,524 3881 24,279 47,694 50 99,428

21‑Jul 2955 2747 19,767 170,492 44 196,005

21‑Aug 363 1074 8543 303,252 16 313,248

21‑Sep 36 631 1187 239,152 9 241,015

21‑Oct 11 397 220 197,488 7 198,123

21‑Nov 6 510 147 248,064 296 249,023

21‑Dec 14 480 143 166,615 63,644 230,896

22‑Jan 2 32 20 12,964 291,817 304,835

22‑Feb 3 5 11 550 253,746 254,315

22‑Mar – 2 2 98 233,137 233,239

22‑Apr – 2 1 25 132,539 132,567

22‑May – – 6 5 133,097 133,108

22‑Jun – – – 8 85,050 85,058

22‑Jul – – – – 1877 1877

Clade Total 496,938 207,758 264,741 1,408,083 1,195,971 3,573,491
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than 1 indicates that nonsynonymous changes are dis-
favored. We tabulated missense and synonymous muta-
tions for all the viruses analyzed.

Statistical analysis
Significance was calculated between clades at each 
time point for a particular trait of a gene. For example, 
we tested whether Alpha’s Spike gene Adenine nucleo-
tide distribution is significantly different than Beta/
Mu’s Spike gene Adenine nucleotide distribution dur-
ing January 2021. These comparisons were calculated 
per gene per month for each nucleotide and codon. We 
used Python’s (version 3.8) SciPy library [39] and Pandas 
[40] to run a Welch’s t-test and find the raw p-values for 
each of the tests performed. p-values were adjusted using 
the Bonferroni correction (0.05/N), where significance is 
dependent on the number of tests performed (N). If the 
raw p-value is less than the adjusted threshold, the null 
hypothesis is rejected.

Figure preparation
All figures were  created using Matplotlib 3.5.1. [41], 
BioRender, and Graphpad Prism 9.4.1.

Results
In the current study, 3,573,491 SARS-CoV-2 genome 
sequences downloaded from the GISAID website and 
assigned to Alpha, Beta/Mu, Gamma/Lambda, Delta, 
and Omicron clades were analyzed (Table 1).

Nucleotide frequency over time
To quantify the nucleotide usage variation within and 
between clades, we calculated the frequency of nucleo-
tides both individually (A, T, C, G, appear in this order 
for each month/clade) and grouped as purines (sum of 
A and G), pyrimidines (sum of T and C), adenine–thy-
mine (sum of A and T), and guanine-cytosine (sum of G 
and C) over the period of 32 months for individual genes: 
ORF1ab, Spike, ORF3a, ORF3b, E, M, ORF6, ORF7a, 
ORF7b, ORF8, N, and ORF10. Despite the presence of 
mutations defining the clades themselves, our analy-
sis revealed very low variation within and between the 
clades across 32 months for all genes. This low variation 
is demonstrated by the observed nucleotide frequency 

distributions over select months for the structural genes 
(Spike, E, M, and N) from all 5 clades in Fig.  2. Corre-
sponding graphs and data for all other genes (ORF1ab, 
ORF3a, ORF3b, ORF6, ORF7a, ORF7b, ORF8, and 
ORF10) can be found in Additional files. For most dis-
tributions in Fig. 2, all samples of a clade are very close 
in frequency to the median (orange bar), making the 
interquartile range (black box) and whiskers (black ver-
tical lines) indistinct. Based on these data, nucleotide 
usage frequency for most gene sequences is observed 
as T > A > C > G. Specifically, Spike, E, and M genes with 
high usage of T nucleotide showed similar usage fre-
quencies of A, T, C and G nucleotides to most genes 
within and between all clades for the select months of 
May 2020, October 2020, May 2021 and February 2022 
(Fig.  2A, C, E,  and G, respectively—these months were 
chosen because they each contain samples from each 
clade) (variance data can be found in Additional file  1: 
Table  S1). Interestingly, the nucleotide usage of the N 
gene is unique in comparison to other structural genes 
and is consistently biased towards A nucleotides rather 
than T (Fig.  2G: A > C > G > T). Analysis of nucleotide 
frequencies for the Spike, E, M, and N genes over the 
largest sampling months per clade (highlighted by bold 
italic font in Table 1) also showed largely similar usage of 
nucleotides (Fig. 2B, D, F, H, respectively).

Despite the apparent low variation in the structural 
gene’s nucleotide usage, statistical analysis of clade dis-
tributions within each month revealed many significant 
differences  (Additional file  13: Figure S1). All compari-
sons were calculated using a Welch’s t-test, assuming 
variance is unequal and applying the Bonferroni correc-
tion (adjusted alpha). Statistical results are summarized 
in Table 2 and 3 and all the data can be found in Addi-
tional file 2: Table S2 and Additional file 3: Table S3. The 
greatest number of significant differences between clade 
nucleotide distributions for Spike, E, M, and N genes all 
resulted from different months, though similar in num-
ber (Table 2). When these differences are summed across 
clades and months, the number of significant differences 
between nucleotides varies widely for the Spike, E, M, 
and N genes (Table 3). The differences seen across nucle-
otide frequencies and months is to be expected with ran-
dom mutations.

Fig. 2 Minimal Differences in Nucleotide Frequency Between Clades, Over Time Across Structural Genes. Clades are represented by their Greek 
letter and corresponding color for line graphs: Alpha—α (red), Beta/Mu—β/μ (blue), Gamma/Lambda—γ/λ (black), Delta—δ (orange), and 
Omicron—ο (green). Within each box plot, orange bars represent the median nucleotide frequency of each clade distribution, red dots represent 
outliers, and black boxes represent the first and third quartiles (often hidden behind the orange median bar). A Spike gene nucleotide frequency 
distributions over select months. B Spike gene average nucleotide frequencies plotted over significantly large sampling months. C E gene 
nucleotide frequency distributions over select months. D E gene average nucleotide frequencies plotted over significantly large sampling months. 
E M gene nucleotide frequency distributions over select months. F M gene average nucleotide frequencies plotted over significantly large sampling 
months. G N gene nucleotide frequency distributions over select months. F N gene average nucleotide frequencies plotted over significantly large 
sampling months. All line graphs utilized the bold regions of the Table 1 clade distributions

(See figure on next page.)
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Fig. 2 (See legend on previous page.)
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This low variation trend continues for the structural 
genes regarding adenine–thymine/ guanine-cytosine 
(AT/GC) and purine/pyrimidine (AG/TC) frequency 
distributions (Additional file  14: Figure S2 and Addi-
tional file  15: Figure S3 respectively, and Additional 
file 4: Table S4 and Additional file 5: Table S5). We also 
analyzed nucleotide, purine/pyrimidine (AG/TC) and 
adenine–thymine/guanine-cytosine (AT/GC) frequency 
data for ORF1ab, ORF3a, ORF3b, ORF6, ORF7a, ORF7b, 
ORF8, and ORF10 (Additional file  5: Table  S5,  Addi-
tional file 6: Table S6,  Additional file 16: Figure S4, Addi-
tional file  17: Figure S5, Additional file  18: Figure S6, 
Additional file  19: Figure S7, Additional file  20: Figure 
S8, and Additional file  21: Figure S9). These non-struc-
tural genes also express very little variation within and 
between clade distributions over time. Of note, ORF6 
gene nucleotide usage data is biased towards the A nucle-
otide (A > T > C > G), and ORF8 gene uses the G nucleo-
tide slightly more often than C (T > A > G > C). Also, 
genes ORF7a, ORF8, and ORF10 contain many outliers in 
comparison to other genes (Additional file 21: Figure S9).

Very minimal nucleotide variation is present within and 
between clades for each gene when the y-axis is scaled 
between 0 and 1. The variance in nucleotide frequency 
fluctuates over time much more so than the average of 
these clade distributions for each gene (Additional file 1: 
Table S1 and Additional file 6: Table S6). Also, the aver-
age and variance of these distributions over time for all 
clades are shown to positively covary for Spike (4.73E−11), 
ORF3a (1.36E−08), ORF3b (1.89E−08), E (2.51E−08), 

ORF6 (2.74E−08), ORF7a (2.28E−07), N (7.34E−09), and 
ORF10 (3.34E−06), and negatively covary for ORF1ab 
(− 2.13E−10), M (− 3.89E−10), ORF7b (− 6.60E−07), and 
ORF8 (− 3.93E−09) genes (Additional file 1: Table S1 and 
Additional file 6: Table S6). Interestingly, the nucleotide 
variance over time for Omicron tends to fluctuate away 
from Alpha, Beta/Mu, Gamma/Lambda, and Delta, 
which are often the same. However, there is an average 
increase in nucleotide variance over time for most genes/
clades, peaking in late 2021 and into spring 2022 (Addi-
tional file 1: Table S1).

Codon usage bias over time
Following the observation of very low variation between 
and within clades at the nucleotide level, we performed 
variation analysis on the level of codons to better under-
stand the usage of specific synonymous codons unique to 
each clade. Our codon analysis across all genes revealed 
very minimal variation between and within clades 
over the 32-month sampling period. Statistical analysis 
between clades per month were conducted as described 
for the nucleotide data above.

Codon distribution plots for each gene highlighted in 
Fig. 3 and in the supplemental information  were chosen 
based on the greatest number of significant differences 
between clades summed over 32  months (Additional 
file 7: Table S7,  Additional file 22: Figure S10, Additional 
file  23: Figure S11, and Additional file  24: Figure S12). 
Individual months depicted as box plots in Fig. 3 for each 
clade are examples spanning the most heavily sampled 
time periods with all clades present (Table  1). The line 
plots in Fig. 3 show the average codon frequency for each 
clade over the most heavily sampled months specific to 
each clade (bolded values in Table 1).

A codon frequency data analysis of the codon GAT 
(aspartic acid) in the Spike gene, CTG (leucine) in the E 
gene, TAC (tyrosine) in the M gene, and CGA (arginine) 
in the N gene showed very low variation (Fig.  3). How-
ever, similar to nucleotide frequency distributions, sta-
tistical analyses on these codon frequency data showed 
that many of the clade comparisons are significantly 
different. Statistical results for these specific codons are 

Table 2 SARS‑CoV‑2 Structural Gene Nucleotide Significant Difference Analysis Highlighting Specific Months

Data from which this table was created can be found in Additional file 2: Table S2 and Additional file 3: Table S3

Gene Spike E M N

Month with greatest number of significant differences (listed 
‑summed across all clades and nucleotides)

July 2021: 38 differ‑
ences

December 2020: 33 
differences

December 2021: 28 
differences

April 2021: 
38 differ‑
ences

Range of significant p‑values 1.94E−05–0 0.001–9.75E−116 0.001–0 0.001–0

Adjusted alpha 0.0125 0.0014 0.0013 0.0125

Table 3 Total SARS‑CoV‑2 Nucleotide Significant Differences 
Across All Clades and Timepoints

Data from which this table was created can be found in Additional file 2: Table S2 
and Additional file 3: Table S3

Gene → Spike E M N

Nucleotide ↓
A 140 55 98 172

T 103 109 140 116

C 116 111 136 147

G 145 109 105 156
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summarized in Table 4 and all the data can be found in 
Additional file 7: Table S7 and Additional file 8: Table S8. 
The greatest number of significant differences between 

clade nucleotide distributions for Spike, E, M, and N 
genes resulted in overlapping months in the spring and 
summer of 2021, though similar in number (Table  4). 

Fig. 3 Codon Usage of Structural Genes Remains Stable Between Clades and Over Time. Codons highlighted here were selected based on greatest 
number of significant differences between December 2019 and July 2022 (Additional file 7: Table S7). Clades are represented by their Greek letter 
and corresponding color for line graphs: Alpha—α (red), Beta/Mu—β/μ (blue), Gamma/Lambda—γ/λ (black), Delta—δ (orange), and Omicron—ο 
(green). Within each box plot, orange bars represent the median codon frequency of each clade distribution, red dots represent outliers, and black 
boxes represent the first and third quartiles (often hidden behind the orange median bar). A Spike gene GAT (aspartic acid) frequency distributions 
(selected months) (box plots) and the average GAT frequency over time (line graph). B E gene CTG (leucine) frequency distributions (selected 
months) and average CTG over time. C M gene TAC (tyrosine) frequency distributions (selected months) and average TAC over time. D N gene 
CGA (arginine) frequency distributions (selected months) and average CGA over time. All line graphs utilized the bold regions of the Table 1 clade 
distributions
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Codon usage analysis for non-structural genes also 
resulted in low variation across and within clades over 
time (Additional file  9: Table  S9,  Additional file  10: 
Table S10,  Additional file 23: Figure S11, and Additional 
file 24: Figure S12).

After observing very low codon usage distribution 
changes over time for each of the five clades, we sought 
to further examine codon bias by calculating the relative 
synonymous codon usage (RSCU) across the 3,573,491 
SARS-CoV-2 sequences. We focused our analysis on 
the three genes consisting of at least 1000 nucleo-
tides (ORF1ab, Spike, and N genes shown in Fig. 4) and 
ignored shorter genes for which it is more likely that a 
codon is represented just by chance. Also highlighted in 
Fig. 4 is proline average RSCU over the largest sampling 
months for each clade (bold distributions in Table  1). 
We found a consistent bias of proline codons towards 
CCT and CCA, followed by CCC and CCG for ORF1ab 
sequences of all clades (Fig.  4A). When we evaluate all 
codons across four months spanning each clade’s great-
est sampling months, very minor difference in proline 
average RSCU between clades was observed. Specifically, 
Fig.  4B shows that GCT (alanine), AGA (arginine), and 
GGT (glycine) are consistently the top three overrepre-
sented (> > 1.5) and GCG (alanine), CGG (arginine), and 
CCG (proline) are consistently the top three underrep-
resented codons (< < 0.5) for ORF1ab gene. The Spike 
gene shows a similar bias among all clades towards CCT 
and CCA proline codons, while CCG is used minimally 
(Fig. 4C). Calculation of the average RSCU for each clade 

spanning their largest sampling months (bolded months 
in Table 1) revealed that Spike gene sequences are highly 
biased towards AGA (arginine), GGT (glycine), and TCT 
(serine) codons (top three >  > 1.5), and nominally use 
GCG (alanine), CCG (proline), and TCG (serine) codons 
(bottom three <  < 0.5) (Fig. 4D).

We observed differences in comparison to ORF1ab 
and Spike genes in the average RSCU trends among the 
N gene sequences. Though, the average RSCU for proline 
codons are similar across all clades; CCA is used more 
often than CCT, and there is no substantial separation in 
usage between CCA, CCT and CCC, CCG (Fig. 4E). The 
average RSCU fluctuated over time for several codons 
within each clade (Fig. 4F). The top three highly overrep-
resented codons (> > 1.5) in N gene sequences are GCT 
(alanine), AGA (arginine), and ACT (threonine), and 
the bottom three underrepresented codons (< < 0.5) are 
AGG (arginine), TGC (cysteine), and ATA (isoleucine) 
(Fig. 4F).

CAI and dN/dS over time
In order to measure how similar SARS-CoV-2 Spike 
gene codon usage is to human codon usage, we cal-
culated CAI as it changed over time. Separately, we 
also calculated dN/dS over time in order to measure 
whether or not nonsynonymous changes were favored 
at specific months. We plotted both these values in 
Fig. 5 for each clade for the months highlighted in bold 
italic in Table 1, along with average synonymous muta-
tions per sequence and average missense mutations 

Table 4 SARS‑CoV‑2 Structural Gene Codon Significant Difference Analysis Highlighting Specific Months

Data from which this table was created can be found in Additional file 7: Table S7 and Additional file 8: Table S8

Gene: Codon Spike: GAT E: CTG M: TAC N: CGA 

Month(s) with greatest number of significant differences (summed 
across all clades)

April, June, and July 
2021: 9 differences 
each

March 2021: 
9 differences

May and June 
2021: 8 differences 
each

April and July 2021: 
9 differences each

Range of significant p‑values (order corresponding to month in cell 
above)

7.01E−07‑0
5.17E−06‑0
1.12E−06‑0

3.27E−08‑0 3.11E−08‑0
2.85E−06‑0

4.31E−05‑0
1.65E−09‑0

Adjusted alpha (order corresponding to month in first cell) 8.35E−05

8.33E−05

8.36E−05

1.47E−04 9.14E−05

9.01E−05
8.43E−05

8.43E−05

Fig. 4 Proline Usage Remains Stable Over Time Across Clades—AGA (Arg) Consistently Overrepresented in ORF1ab, Spike and N Genes. Line graphs 
highlight the average relative synonymous codon usage (RSCU) of the four proline codons (CCA (blue), CCC (orange), CCG (green), and CCT (red)). 
Heatmaps show the average RSCU per codon (y‑axis) for four months spanning each clades largest sampling months (bolded regions of Table 1). 
A codon with a RSCU value of > 1.5 is considered highly overrepresented and < 0.5 is considered highly underrepresented. Black boxes represent a 
missing codon. A ORF1ab gene proline average RSCU over time. B ORF1ab gene average RSCU for all codons. C Spike gene proline average RSCU 
over time. D Spike gene average RSCU for all codons. E N gene proline average RSCU over time. F N gene average RSCU for all codons. All line 
graphs utilized the bold regions of the Table 1 clade distributions

(See figure on next page.)



Page 11 of 22Fumagalli et al. Virology Journal           (2023) 20:31  

Fig. 4 (See legend on previous page.)
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per sequence (Table  5). For Alpha, Beta/Mu, Gamma/
Lambda, and Delta, the CAI remains largely constant 
over their respective timespans, with peak CAI values 
occurring towards the latter end of the various time-
points (Alpha and Omicron are an exception) (Fig. 5A). 
For Omicron, a dramatic decrease in CAI is observed 

from its onset compared to its final timepoint, though 
its CAI values are higher in comparison to other clades. 
The peak CAI values for Alpha, Beta/Mu, Gamma/
Lambda, Delta, and Omicron were 0.7402 (December 
2021), 0.7402 (November 2020), 0.7402 (July 2021), 
0.7393 (November 2021), and 0.7423 (January 2022), 

Fig. 5 CAI Decreases While dN/dS Increases at Later Timepoints. For all panels, only the months in the bold italic highlighted portion of Table 1 
are displayed. Clades are represented by their Greek letter and corresponding color for line graphs: Alpha—α (red), Beta/Mu—β/μ (blue), Gamma/
Lambda—γ/λ (black), Delta—δ (orange), and Omicron— (green). A Average CAI over time. B Average dN/dS over time. C Average synonymous 
mutations per sequence over time. D Average missense mutations per sequence over time

Table 5 Total Number of Mutations for each Virus, Divided by Synonymous and Nonsynonymous

Virus—strain/clade Total missense 
mutations

Total synonymous 
mutations

Date range Number of 
sequences

SARS‑CoV‑2, Spike‑ Alpha 8,226,073 1,358,712 12/2019–02/2022 496,938

SARS‑CoV‑2, Spike—Beta/mu 1,721,205 382,138 12/2019–04/2022 207,758

SARS‑CoV‑2, Spike—Delta 27,031,401 1,983,386 12/2019–06/2022 1,408,083

SARS‑CoV‑2, Spike—Gamma/Lambda 3,138,059 662,222 12/2019–05/2022 264,741

SARS‑CoV‑2, Spike—Omicron 46,728,781 9,935,369 12/2019–07/2022 1,195,971

Influenza, HA‑ H1N1 427,034 664,436 01/1989–02/2019 15,080

Influenza, HA—H3N2 841,792 1,375,395 04/1982–06/2021 29,045

Dengue virus, E—Dengue 1 24,369 163,741 10/2019–01/2005 1676

MERS‑CoV, Spike 1191 6660 12/2008–04/2019 531
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respectively, compared to the reference CAI of 0.7405 
(Fig. 5A).

The dN/dS rises over time for four out of five clades, 
most notably for Gamma/Lambda, Beta/Mu and Omi-
cron and less so for Delta (Fig.  5B). Alpha exhibited a 
decrease in dN/dS over time. As with CAI, the dN/dS 
were much higher for Omicron at any timepoint when 
compared to the other clades. The max dN/dS for Alpha, 
Beta/Mu, Delta, Gamma/Lambda, and Omicron were 
1.815 (December 2020), 1.295 (May 2021), 1.917 (April 
2021), 2.234 (May 2021), and 5.79 (April 2022) (Fig. 5B).

We also evaluated trends of CAI and dN/dS for genes 
other than Spike (Additional file 25: Figure S13 and Addi-
tional file 26: Figure S14, respectively), and these trends 
seemed to vary considerably depending on the gene and 
clade. For the structural proteins, peaks and valleys were 
observed for the different months, though all CAI val-
ues tend to remain within 0.01 of each other across time 
(Additional file 25: Figure S13). Similar to CAI, the dN/
dS trends are variable depending on the gene. Among 
the four structural protein coding genes, Spike and N 
have the most dramatic changes over time, with M and E 
demonstrating less dramatic changes (Additional file 25: 
Figure S13A, C, B and D, respectively). Most of the non-
structural proteins (apart from ORF3a, ORF7a and ORF8 
genes) demonstrate relatively small changes over time, 
and all of the nonstructural proteins have far less dra-
matic changes than Spike gene (Additional file 26: Figure 
S14).

Mutation heatmaps
To visualize the number of each type of mutation 
(grouped broadly into synonymous and nonsynony-
mous), we plotted each type of codon substitution 
(e.g., AAT to AAC, TAC to TAT, etc.) on heatmaps, 
with darker colors indicating a higher proportion of 
a given mutation (Fig.  6). We specifically selected 
viruses that share a similar nucleic acid profile to 
SARS-CoV-2 (RNA viruses) and selected protein cod-
ing regions for genes similar to Spike (related to cell 
entry or fusion). The relative proportion of nonsyn-
onymous mutations is highest in both Delta and Omi-
cron SARS-CoV-2 strains, followed by H1N1, H3N2, 
Dengue 1, and MERS-CoV. Each plot in Fig.  6 repre-
sents the totality of the sequences we collected for each 

virus. As these viruses each had different numbers of 
available sequences, we decided to see whether the 
number of sequences sampled would alter our conclu-
sions. In Additional file  27: Figure S15, we control for 
the number of sequences in our SARS and Influenza 
samples and show that it is minimally altered from the 
original visualization in Fig.  6 with the total cohort of 
sequences. In order to confirm that these mutation 
visualizations were not being significantly biased by 
mutations that were found in less than 2 sequences, 
we also generated heatmaps that excluded these rare 
mutations, to be found in Additional file 28: Figure S16, 
which resulted in findings similar to heatmaps that had 
no mutations excluded. Based on this, our conclusions 
remain the same.

Next, we incorporated information about the posi-
tion of the codon changes along the Spike sequence into 
the presentation of our data. Using the same dataset 
and considering where in the sequence mutations were 
occurring, we plotted codon and nucleotide composition 
as heatmaps in Additional file  29: Figure S17. Here, we 
calculated entropy [42] for every position along the Spike 
sequence and excluded any sites for which entropy was 
lower than 0.1. This enabled us to focus on areas along 
the sequence that had more variable nucleotide or codon 
composition. Based on the Uniprot annotation for the 
Spike sequence [43], the receptor binding domain (RBD) 
is between amino acids 319–541. For SARS-CoV-2 Delta, 
5 of the high entropy positions are within the RBD, with 
the remainder 17 being outside of this region. For many 
of these positions, the dominant codon is still the WT 
codon. For SARS-CoV-2 Omicron, there are a higher 
number of entropy positions [32], with 16 of them within 
the RBD, indicating that there is a greater proportion 
of high entropy positions for which the WT codon is 
not dominant when compared to Delta. For most of the 
positions along Spike gene for both Delta and Omicron, 
nonsynonymous mutations outnumber synonymous 
mutations—however, there are exceptions, such as posi-
tions 155, 409, 412, 476, 573, 855, 881, 1121, and 1258 for 
Delta, and positions 10, 52, 67, 409, and 451 for Omicron 
(Table  6). A full accounting of all the mutations within 
our dataset can be found in Additional file 11: Tables S11-
70.zip. Further, we have added Uniprot annotations to 
all of the mutations for structural proteins in Additional 

Fig. 6 Nonsynonymous Mutations are Greatly Preferred in SARS‑CoV‑2 Omicron and Delta when Compared to Other Viruses. Both axes represent 
individual codons, with each point on the heatmap representing a mutation from one codon to the other. Darker points on the heatmap represent 
more frequent mutations. Mutations within the black boxes are synonymous, and mutations outside these boxes are nonsynonymous. Individual 
panels show heatmaps for A 1,407,663 SARS‑CoV‑2 Delta Spike Protein sequences ranging from 10/2020 to 06/2022, B 1,195,200 SARS‑CoV‑2 
Omicron Spike protein sequences ranging from 11/2021 to 07/2022, C 15,080 H1N1 HA protein sequences ranging from 01/1989 to 02/2019, D 
29,045 H3N2 HA sequences ranging from 12/1980 to 06/2022, E 531 MERS‑CoV Spike Protein Sequences ranging from 12/2008 to 04/2019, and F 
1676 Dengue 1 E Protein Sequences ranging from 01/2005 to 10/2019

(See figure on next page.)
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Fig. 6 (See legend on previous page.)
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file 12: Tables S71-90.zip, to give insight onto regions and 
functional domains associated with particular mutations.

Discussion
In this study, we analyzed the nucleotide and codon fre-
quency data for 3,573,491 SARS-CoV-2 sequences, cov-
ering 12 genes (ORF1ab, Spike, ORF3a, ORF3b, E, M, 
ORF6, ORF7a, ORF7b, ORF8, N, and ORF10) and five 
GISAID specified clades (Alpha, Beta/Mu, Gamma/
Lambda, Delta, and Omicron) over 32 months (Decem-
ber 2019–July 2022) [28]. We discovered when ana-
lyzing each gene individually there is very minimal 
overall nucleotide and codon variation between and 

within clades over time regardless of the length of the 
gene. We subsequently showed that within this pool of 
few mutations, nonsynonymous Spike gene mutations 
overwhelmingly dominate the phenotypic landscape with 
relatively strong selection pushing for changes away from 
human codon usage trends/bias in most cases. Overall, 
our findings showed that as SARS-CoV-2 spreads around 
the world, small shifts in nucleotide and codon frequency 
are enough to produce a variety of clades expressing var-
ying degrees of infectivity and virulence [44].

Several previous studies also looked at nucleotide and 
codon usage of SARS-CoV-2, but used relatively small 
sample sizes, covered shorter date ranges, excluded 

Table 6 Wild Type, Synonymous, and Nonsynonymous Codons per High Entropy Position (exceeding 0.1) on SARS‑CoV‑2 Spike

SARS-CoV-2 delta SARS-CoV-2 omicron

Position WT codons Synonymous 
codons

Nonsynonymous 
codons

Position WT codons Synonymous 
codons

Nonsynonymous 
codons

4 1,387,485 51 20,255 10 1,071,175 124,747 40

94 792,111 88 615,597 18 593,973 16 601,961

111 1,374,841 642 32,333 23 598,455 29 246,641

141 220,153 4 1,186,783 52 1,111,530 84,384 36

144 1,368,800 1854 36,124 66 606,936 39 588,890

155 21,903 191 150 67 553,440 542,664 3785

156 21,572 94 123 94 605,813 18 589,846

157 21,145 6 1,378,971 141 8899 194 1,140,676

221 1,253,151 46 154,877 211 609,770 234 540,403

288 1,389,455 57 18,564 212 597,049 41 598,862

409 1,383,411 24,569 101 338 11,212 0 1,184,745

412 1,386,531 21,428 122 345 823,247 27 372,129

476 1,393,255 8165 6652 370 13,942 5 1,182,006

573 1,367,400 38,500 2180 375 598,382 26 597,529

612 1,388,221 56 19,803 404 600,131 15 595,804

855 1,371,204 35,927 944 407 603,498 26 592,427

881 1,300,777 107,237 61 409 1,065,180 130,764 10

949 30,891 1 1,377,121 416 50,767 0 1,145,194

1103 1,389,498 118 18,462 439 60,885 1 1,135,053

1121 1,383,517 23,035 1529 445 636,351 1 559,592

1258 1,362,896 39,980 5204 451 1,048,422 274 147,250

1263 1,371,670 2790 33,609 483 14,073 0 1,181,087

485 1,146,988 27 48,153

492 61,473 3 1,133,675

495 610,353 29 584,748

504 15,157 3 1,179,979

546 607,050 37 588,874

700 1,157,571 58 38,333

703 1,100,568 34 95,357

763 21,025 40 1,174,898

855 605,800 1207 588,952

980 607,167 10 588,784
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clades, and/or analyzed concatenated genes or full 
sequences [24–27, 45–49]. By analyzing the genes indi-
vidually and expanding the number of sequences and 
dates, we found that most SARS-CoV-2 genes over time 
favored the T nucleotide followed by A, C and G. Roy 
et al. [22] found similar results with 99 GISAID concat-
enated sequences downloaded in February 2020; though, 
slight variations in nucleotide frequency have been 
found [23, 45, 47, 50], A/T bias remains the same, except 
within the N gene (A > C > G > T) (Fig.  2). Low GC con-
tent is found in all coronaviruses and has been shown 
to strengthen translation initiation through biochemical 
rigidity [50, 51]. The G and/or C nucleotide content is on 
average suppressed in most clades for the genes analyzed 
in this study. At the same time, the T nucleotide con-
tent on average increased in ORF1ab, ORF3a, ORF3b, E, 
ORF7b, ORF8, and N genes ( Additional file  5: 
Table  S5). ORF6 has the biggest disparity between A/T 
and G/C frequencies, though this difference is decreas-
ing over time for most clades. The N gene is unique in its 
nucleotide content; however, there is a gradual increase 
in the T nucleotide and decrease in the C nucleotide for 
all clades but Alpha. Several publications have shown 
evidence for hypermutation C—> T transitions and its 
possible relation to RNA editing processes via APOBEC 
proteins [25, 48, 49]. This may be one explanation for the 
overall maintenance of low GC content of SARS-CoV-2 
sequences, despite the large difference from human usage 
[48].

As Fig. 2 illustrates, we saw very little nucleotide vari-
ation within and between clades for each gene. None-
theless, many of these differences between clades were 
significant and aided in their divergence (see Methods; 
Additional file 2: Table S2 and Additional file 3: Table S3). 
We can zoom in on these distributions and note some 
interesting observations: (1) average nucleotide frequency 
fluctuations over time are much smaller than changes in 
variance (for most genes, variance fluctuates similarly for 
all clades but Omicron), and (2) the average and variance 
of these distributions over time are shown to positively 
covary for Spike, ORF3a, ORF3b, E, ORF6, ORF7a, N, 
and ORF10 genes, and negatively covary for ORF1ab, M, 
ORF7b, and ORF8 genes. Many biological analyses focus 
on following the average over time (even when full dis-
tribution data is displayed) [24, 47], but other moments 
(i.e., properties or characteristics) of the distribution can 
influence the evolutionary trajectory of a given clade. 
Following the variance in nucleotide frequency and not 
just the average is important since large distribution 
variances tend to reduce the strength of selection; and 
therefore, reduce the likelihood of a particular nucleo-
tide increasing in frequency over time (everything else 
held equal) [52]. For most SARS-CoV-2 genes, changes 

in variance over time for all nucleotides are quite small, 
though increasing in most cases and peaking in different 
months for different genes. Selection’s increasingly weak 
magnitude, independent of direction, has been relatively 
maintained across these 32  months for SARS-CoV-2. 
Nonetheless, we documented many significant differ-
ences between the clades and their nucleotide distribu-
tions over time. We noted in the results that there were 
more differences in some months over others but did not 
find any causal reasoning behind it.

Our codon analysis was performed to assess the 
codon bias within each of the five clades, across 12 
genes, and over 32  months. We found that the nucleo-
tide preference within codons does not strictly adhere 
to the nucleotide bias discussed above for whole genes. 
For example, the top three overrepresented codons for 
ORF1ab (GCT, AGA, and GGT) and Spike (AGA, GGT, 
and TCT) genes use the G nucleotide most often, though 
the T nucleotide is preferred in the third position of the 
codon (Fig. 4B, D). The unique nucleotide bias of N gene 
(A > C > G > T) (Fig.  2G) resulted in a bias towards the 
A nucleotide within its codons. The T nucleotide is the 
least used nucleotide across the N gene; nonetheless, it 
is more likely to reside in the third position among the 
top overrepresented codons (GCT, AGA, and ACT) 
(Fig. 4F). Similar RSCU results were found when concat-
enating genes—codon AGA is found to possess an RSCU 
value > 2, regardless of date or location of samples [34, 47, 
50].

When we look closely at the codon with the highest 
RSCU value for ORF1ab, Spike and N genes (GGT, AGA, 
and AGA respectively), there is an overall decrease in the 
average frequency across most clades over time (Beta/Mu 
increases for ORF1ab and Spike genes, Alpha increases 
for Spike gene) (Additional file  9: Table  S9). We also 
found an overall decrease in the frequency variance for 
ORF1ab (GGT) and N (AGA) genes, and an increase for 
the Spike (AGA) gene over time (Beta/Mu increases for 
ORF1ab gene) (Additional file 10: Table S10). This means 
the SARS-CoV-2 individual codon usage over time looks 
more alike with fewer GGT codons in their ORF1ab gene 
and AGA codons in their N gene. Meanwhile, diversity in 
the use of the Spike gene AGA codon is increasing. This 
is interesting because the three codons with the highest 
RSCU values in humans (CTG, GCC, and CAG) are GC 
heavy, especially in the first and third codon positions. 
Overall, the SARS-CoV-2 codon usage remains quite dif-
ferent from human usage [53]. This antagonism may aid 
the SARS-CoV-2 population by promoting better folded 
proteins [34] and avoiding competition [25].

We narrowed our focus to a specific amino acid group 
to identify explicit differences between synonymous 
codons within each clade and across genes ORF1ab, 
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Spike, and N. Proline codon (CCA, CCC, CCG, and 
CCT) usage was of particular interest to follow because 
of its slow rate of translation and requirement of a spe-
cific elongation factor (eIF5A) for translation of poly-
proline sequences [54]. ORF1ab, Spike, and N genes 
showed slightly different proline codon preferences 
that were maintained over the 32 months for each clade 
(Fig. 4A, C, E). All three genes for all clades preferred 
codons CCA and CCT, but the rarely used proline 
codons are what set these three genes and clades apart. 
CCG and CCC are regularly used in the ORF1ab gene at 
similar frequencies, CCC in the Spike gene, and both 
CCG and CCC in the N gene but at differing  frequen-
cies. This codon usage is consistent with the results of 
the top three RSCU valued codons in ORF1ab, Spike 
and N genes, where A and T nucleotides are more likely 
to be present in the third position. It has been shown in 
bacteria that the synonymous proline codon used mat-
ters in the context of translation efficiency [55]. Human 
proline RSCU (CCC > CCT > CCA > CCG) is quite a bit 
different than SARS-CoV-2 usage and may further pro-
mote the slowing of translation [53].

We also looked more closely at codons for each gene 
that resulted in the largest total number of significant 
differences between clades summed over all 32 months 
(Additional file 7: Table S7 and Additional file 22: Fig-
ure S10). Within each month, codon distributions for 
each clade are compared pairwise, unless sample size 
is insufficient for the calculation. With very little vari-
ation within each clade’s codon distributions over 
time (as seen in Fig.  3 and Additional file  23: Figure 
S11 and Additional file  24: Figure S12), we found that 
this is enough variation to drive significant differences 
between clades. There were a few interesting observa-
tions of these codons (ORF1ab—CTT, Spike—GAT, 
ORF3a—CAG, ORF3b—TTA, E—CTG, M—TAC, 
ORF6—GAC, ORF7a—GTT, ORF7b—TTG, ORF8—
CAA, N—CAG, and ORF10—CTC): (1) they consist of 
mostly T nucleotides and few G nucleotides, (2) they 
are more likely to possess a C nucleotide in the first 
position, equally an A or T nucleotide in the second 
position, and a G nucleotide in the third position, and 
(3) CAG (glutamine) is the only codon with the most 
significant differences found in more than one gene 
(ORF3a and N). We also analyzed the average and vari-
ance over time of these codon frequency distributions 
and found that most clades of a given gene fluctuate 
together. We show that within a gene, these codons are 
more likely to decrease in average and variance over 
time (Additional file 9: Table S9 and Additional file 10: 
Table S10). As we mentioned when discussing nucleo-
tide frequency, following the variance in these codon 
frequency distributions matters. Reducing the variance 

in codon frequency increases the magnitude of selec-
tion [52]; and therefore, the direction selection pushes 
the SARS-CoV-2 population may not change much, but 
the step size at which it does so can potentially aid the 
divergence of the SARS-CoV-2 clades.

Our CAI analysis shows that SARS-CoV-2 codon usage 
similarity to the host does change over time, though only 
slightly in most cases, and demonstrates that trends are 
not identical for different genes (Fig.  5 and Additional 
file  25: Figure S13). Spike gene, which is considered an 
important and consequential antigenic site for the virus 
[56], had fairly consistent CAI values for most clades, 
but a dramatic drop in CAI for Omicron, indicating that 
more recent (and contagious) strains of the virus are 
moving away from human codon usage. No other gene 
mimics this trend for Omicron (the closest being ORF6 
gene, though this still shows an increase in CAI in later 
months), which could point towards a unique codon 
usage characteristic of the Spike gene. Posani et  al. cal-
culated and compared CAI for several genes, including 
Spike gene, from December 2019 to February 2021, and 
their primary conclusion was that CAI tends to decrease 
over time for these genes [8]. Mogro et  al. calculated 
changes in CAI from December 2019 to September 2021, 
finding a negative trend in CAI when all genes are con-
catenated. However, this trend becomes less apparent 
when sequences were separated by gene or clade [24]. 
Their dataset for the dN/dS analysis is considerably more 
constrained (a total of about 200,000 sequences). Our 
analysis still concurs with their observation that CAI 
does not have a consistent downwards trend over time 
when sequences are separated by gene, and there are 
notable differences between different clades, genes, and 
timepoints in CAI [24].

Our dN/dS analysis also finds the Spike gene to be 
different from the other genes—for Alpha, Delta, and 
Omicron, the ratio is above one for all time points and 
for Gamma/Lambda, it is above one for most timepoints 
after 2021. This shows that nonsynonymous changes are 
favored within the Spike gene for these clades and time-
points. There are no other genes which have any clades 
with dN/dS consistently above one other than ORF8 gene 
Alpha, which is above 1 for a few timepoints in early 
2021. This is yet another way in which Spike gene’s muta-
tion profile differs from other SARS-CoV-2 genes, which 
could be connected to its role as the primary cell entry 
mediator for the virus. Nikolaidis et  al. performed an 
analysis calculating dN/dS over time for about 850,000 
sequences (mixed NCBI and GISAID data) up till Decem-
ber 2021 for Spike, ORf1a, and ORF1b genes; they note 
that dN/dS had started to increase notably for Spike gene 
in the second year of the pandemic, though still remained 
relatively close to one. The average dN/dS ratio for Spike 
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gene was noticed to be above one for all clades [57]. This 
is fairly consistent with our results, though their dN/dS 
numbers are lower than ours for Spike gene at similar 
time points. Of note, our data includes Omicron within 
the first half of 2022, during which dN/dS increased far 
more than any previous time point. We also show data 
for genes not featured in the aforementioned study—all 
of the dN/dS values for these genes are far lower than 
that of Spike gene.

Visualization of the synonymous and nonsynonymous 
mutations of SARS-CoV-2 using heatmaps supported our 
dN/dS calculations for Spike gene, showing that nonsyn-
onymous mutations far outnumber synonymous ones for 
both Omicron and Delta. This contrasts with other RNA 
viruses, which show comparatively fewer nonsynony-
mous mutations. In a clinical study investigating intra-
host single-nucleotide variants (iSNVs), nonsynonymous 
substitutions were noted to be overrepresented, indicat-
ing that there is a biological phenomenon at play in deter-
mining the synonymous and nonsynonymous mutations 
observed for this virus [58–60]. One factor that could be 
relevant to this observed difference between SARS-CoV-2 
and other RNA viruses is the mechanisms underlying the 
fidelity of viral polymerases and the absence/presence of 
the associated proofreading activities. Literature sources 
indicate that the Dengue virus RNA-Dependent RNA 
polymerase (RdRp) has an error rate of approximately 
 1e−4 mutations per base pair [58–60], Influenza A RNA 
polymerase has an error rate of approximately 1.5e−5 
mutations per base pair [61], and SARS-CoV-2 RdRp 
has an error rate between  1e−6 and  5e−6 mutations per 
base pair [62] (estimations for the MERS-CoV mutation 
rate exist, but they do not use comparable methodolo-
gies to the ones cited here for the other viruses). SARS-
CoV-2’s substantially lower error rate than the other RNA 
viruses points to a different proofreading mechanism, 
which could be linked to the preponderance of nonsyn-
onymous mutations—it is possible that this mechanism 
disfavors synonymous changes. Specifically, SARS-CoV-2 
(along with other coronaviruses) encodes nsp14, a 3′–5′ 
exoribonuclease that ameliorates the poor fidelity of the 
RdRp [63]—this is encoded within the ORF1ab region 
of the genome [64]. Influenza A RNA polymerase and 
Dengue virus RdRp are both considered low fidelity repli-
cases [60, 65]. The additional proofreading mechanism in 
SARS-CoV-2 could be tied to the difference observed in 
synonymous and nonsynonymous mutations when com-
pared to other RNA viruses—though this would require 
further investigation to confirm.

We further show the codon and nucleotide com-
position of SARS-CoV-2 Spike Omicron and Delta in 
Additional file  29: Figure S17, and tabulate the portion 
of synonymous, nonsynonymous, and WT codons in 

Table 6. Together, these data support the notion that non-
synonymous changes far outnumber synonymous ones 
for SARS-CoV-2, but this is highly position-dependent, 
and at certain locations along the Spike sequence, syn-
onymous changes are overwhelmingly dominant. Alto-
gether, this could point towards an underlying biological 
mechanism in SARS-CoV-2 that favors nonsynonymous 
changes in most locations, or it could be that SARS-
CoV-2 is a relatively “recent” virus (at least, compared to 
the other viruses featured in our study), and might show 
a different synonymous/nonsynonymous mutation pro-
file later in its evolution.

Conclusion
This study presents a multifaceted analysis of more than 
3.5 million GISAID SARS-CoV-2 sequences since the 
beginning of the 2019 pandemic. We have demonstrated 
differences in the contribution of each of the SARS-
CoV-2 genes and their clades to the overall population, 
and some unique qualities not shared with other RNA 
viruses. Such retrospective analysis of SARS-CoV-2 
viral genomes can yield valuable data that could inform 
future vaccine development through strategies like viral 
deoptimization.

This research has highlighted the minor, but in many 
cases statistically significant, differences in SARS-CoV-2 
clade nucleotide and codon usage over time. Nonethe-
less, our results show a notable difference in the vari-
ance of those distributions, which in turn may heavily 
influence the direction of evolution. Currently, we 
are looking into how location specific traits along the 
Omicron Spike gene contribute to the overall fitness 
of the virus over time. This bottom-up approach may 
lead to a specific set of traits associated with Omicron 
sub-lineages.

Abbreviations
CAI  Codon adaptation index
dN/dS  Nonsynonymous/synonymous mutation ratio
WHO  World Health Organization
VOC  Variant of concern
CUB  Codon usage bias
E  Envelope gene
M  Membrane gene
N  Nucleocapsid gene
RSCU  Relative synonymous codon usage
GRY   Alpha clade
GH  Beta/Mu clade
GR  Gamma/Lambda clade
GK  Delta clade
GRA   Omicron clade
HA  Hemagglutinin
AT  Adenine + Thymine nucleotides
GC  Guanine + Cytosine nucleotides
AG  Purines
TC  Pyrimidines
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Additional file 11. Tables S11-70: Counts of All Mutations for each Gene/
Clade Combination.

Additional file 12.  Tables S71-90: Uniprot Annotations for All Mutations 
in Structural Proteins for all Clades.

Additional file 13. Figure S1: Greatest Number of Significant Differences 
Found Between N Gene Nucleotide Frequency Distributions. Each column 
represents the sum of the number of significant differences resulting from 
comparisons between clades for each nucleotide frequency distribution 
per month (December 2019–July 2022). Significance was determined 
based on a Bonferroni corrected alpha threshold, scaled by the number of 
tests ran per month (Additional file 7: Table S7).

Additional file 14. Figure S2: Monthly Snapshots Reveal Minimal Vari‑
ation in the AT/GC Frequency Distributions. Clades are represented by 
their Greek letter and corresponding color for line graphs: Alpha—α (red), 
Beta/Mu – β/μ (blue), Gamma/Lambda—γ/λ (black), Delta—δ (orange), 
and Omicron—ο (green). Within each box plot, orange bars represent the 
median AT/GC frequency of each clade distribution, red dots represent 
outliers, and black boxes represent the first and third quartiles (often 
hidden behind the orange median bar). A) Spike gene AT/GC frequency 
distributions over selected months. B) Spike gene average AT/GC frequen‑
cies plotted over significantly large sampling months. C) E gene AT/GC 
frequency distributions over selected months. D) E gene average AT/GC 
frequencies plotted over significantly large sampling months. E) M gene 
AT/GC frequency distributions over selected months. F) M gene average 
AT/GC frequencies plotted over significantly large sampling months. G) N 
gene AT/GC frequency distributions over selected months. H) N average 
AT/GC frequencies plotted over significantly large sampling months. All 
line graphs utilized the bold regions of the Table 1 clade distributions. 
Data found in Additional file 5: Table S5.

Additional file 15. Figure S3: Purine/Pyrimidine (AG/TC) Frequency Distri‑
butions are Consistent Across Clades and Time. Clades are represented by 
their Greek letter and corresponding color for line graphs: Alpha—α (red), 
Beta/Mu—β/μ (blue), Gamma/Lambda—γ/λ (black), Delta—δ (orange), 
and Omicron—ο (green). Within each box plot, orange bars represent the 
median AG/TC frequency of each clade distribution, red dots represent 
outliers, and black boxes represent the first and third quartiles (often 
hidden behind the orange median bar). A) Spike gene AG/TC frequency 
distributions over selected months. B) Spike gene average AG/TC frequen‑
cies plotted over significantly large sampling months. C) E gene AG/TC 
frequency distributions over selected months. D) E gene average AG/TC 
frequencies plotted over significantly large sampling months. E) M gene 
AG/TC frequency distributions over selected months. F) M gene average 
AG/TC frequencies plotted over significantly large sampling months. G) 
N gene AG/TC frequency distributions over selected months. H) N gene 
average AG/TC frequencies plotted over significantly large sampling 
months. All line graphs utilized the bold regions of the Table 1 clade 
distributions. Data found in Additional file 4: Table S4.

Additional file 16. Figure S4: Nucleotide Frequency Distributions Over 
Time per Clade in ORF1ab, ORF3a, ORF3b and ORF6 Genes Show Little 

Change Over Time. Clades are represented by their Greek letter and cor‑
responding color for line graphs: Alpha—α (red), Beta/Mu—β/μ (blue), 
Gamma/Lambda—γ/λ (black), Delta—δ (orange), and Omicron—ο 
(green). Within each box plot, orange bars represent the median nucleo‑
tide frequency of each clade distribution, red dots represent outliers, and 
black boxes represent the first and third quartiles (often hidden behind 
the orange median bar). A) ORF1ab gene nucleotide frequency distribu‑
tions over selected months. B) ORF1ab gene average nucleotide frequen‑
cies plotted over significantly large sampling months. C) ORF3a gene 
nucleotide frequency distributions over selected months. D) ORF3a gene 
average nucleotide frequencies plotted over significantly large sampling 
months. E) ORF3b gene nucleotide frequency distributions over selected 
months. F) ORF3b gene average nucleotide frequencies plotted over 
significantly large sampling months. G) ORF6 gene nucleotide frequency 
distributions over selected months. H) ORF6 gene average nucleotide fre‑
quencies plotted over significantly large sampling months. All line graphs 
utilized the bold regions of the Table 1 clade distributions. Data found in 
Additional file 6: Table S6. 

Additional file 17.  Figure S5: Outliers Increase within Nucleotide 
Frequency Distributions Over Time per Clade in ORF7a, ORF7b, ORF8 
and ORF10 Genes. Clades are represented by their Greek letter and cor‑
responding color for line graphs: Alpha—α (red), Beta/Mu—β/μ (blue), 
Gamma/Lambda—γ/λ (black), Delta—δ (orange), and Omicron—ο 
(green). Within each box plot, orange bars represent the median nucleo‑
tide frequency of each clade distribution, red dots represent outliers, and 
black boxes represent the first and third quartiles (often hidden behind 
the orange median bar). A) ORF7a gene nucleotide frequency distribu‑
tions over selected months. B) ORF7a gene average nucleotide frequen‑
cies plotted over significantly large sampling months. C) ORF7b gene 
nucleotide frequency distributions over selected months. D) ORF7b gene 
average nucleotide frequencies plotted over significantly large sampling 
months. E) ORF8 gene nucleotide frequency distributions over selected 
months. F) ORF8 gene average frequencies plotted over significantly large 
sampling months. G) ORF10 gene nucleotide frequency distributions over 
selected months. H) ORF10 gene average nucleotide frequencies plotted 
over significantly large sampling months. All line graphs utilized the bold 
regions of the Table 1 clade distributions. Data found in Additional file 6: 
Table S6.

Additional file 18.  Figure S6: Relatively Large Number of AT/GC Outliers 
Present Across Time per Clade in ORF1ab Relative to ORF3a, ORF3b and 
ORF6 Genes. Clades are represented by their Greek letter and correspond‑
ing color for line graphs: Alpha—α (red), Beta/Mu—β/μ (blue), Gamma/
Lambda—γ/λ (black), Delta—δ (orange), and Omicron—ο (green). Within 
each box plot, orange bars represent the median AT/GC frequency of each 
clade distribution, red dots represent outliers, and black boxes represent 
the first and third quartiles (often hidden behind the orange median bar). 
A) ORF1ab gene AT/GC frequency distributions over selected months. B) 
ORF1ab gene average AT/GC frequencies plotted over significantly large 
sampling months. C) ORF3a gene AT/GC frequency distributions over 
selected months. D) ORF3a gene average AT/GC frequencies plotted over 
significantly large sampling months. E) ORF3b gene AT/GC frequency 
distributions over selected months. F) ORF3b gene average AT/GC fre‑
quencies plotted over significantly large sampling months. G) ORF6 gene 
AT/GC frequency distributions over selected months. H) ORF6 gene aver‑
age AT/GC frequencies plotted over significantly large sampling months. 
All line graphs utilized the bold regions of the Table 1 clade distributions. 
Data found in Additional file 5: Table S5.

Additional file 19. Figure S7: Relatively Large Number of AT/GC Outliers 
Present Across Time per Clade in ORF7a, ORF7b, ORF8 and ORF10 Genes. 
Clades are represented by their Greek letter and corresponding color for 
line graphs: Alpha—α (red), Beta/Mu—β/μ (blue), Gamma/Lambda—γ/λ 
(black), Delta—δ (orange), and Omicron—ο (green). Within each box 
plot, orange bars represent the median AT/GC frequency of each clade 
distribution, red dots represent outliers, and black boxes represent the 
first and third quartiles (often hidden behind the orange median bar).  
A) ORF7a gene AT/GC frequency distributions over selected months. B) 
ORF7a gene average AT/GC frequencies plotted over significantly large 
sampling months. C) ORF7b gene AT/GC frequency distributions over 
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selected months. D) ORF7b gene average AT/GC frequencies plotted over 
significantly large sampling months. E) ORF8 gene AT/GC frequency distri‑
butions (selected months) show a similar pattern over time for each clade 
AT>GC. F) ORF8 gene average AT/GC frequencies plotted over significantly 
large sampling months. G) ORF10 gene AT/GC frequency distributions 
over selected months. H) ORF10 gene average AT/GC frequencies plotted 
over significantly large sampling months. All line graphs utilized the bold 
regions of the Table 1 clade distributions. Data found in Additional file 5: 
Table S5.

Additional file 20. Figure S8: Minimal Change Over Time Within and 
Between Clades in Purine/Pyrimidine (AG/TC) Frequency Distributions 
for ORF1ab, ORF3a, ORF3b and ORF6 Genes. Clades are represented by 
their Greek letter and corresponding color for line graphs: Alpha—α (red), 
Beta/Mu—β/μ (blue), Gamma/Lambda—γ/λ (black), Delta—δ (orange), 
and Omicron—ο (green). Within each box plot, orange bars represent the 
median AG/TC frequency of each clade distribution, red dots represent 
outliers, and black boxes represent the first and third quartiles (often 
hidden behind the orange median bar). A) ORF1ab gene AG/TC frequency 
distributions over selected months. B) ORF1ab gene average AG/TC fre‑
quencies plotted over significantly large sampling months. C) ORF3a gene 
AG/TC frequency distributions over selected months. D) ORF3a gene aver‑
age AG/TC frequencies plotted over significantly large sampling months. 
E) ORF3b gene AG/TC frequency distributions over selected months. F) 
ORF3b gene average AG/TC frequencies plotted over significantly large 
sampling months. G) ORF6 gene AG/TC frequency distributions over 
selected months. H) ORF6 gene average AG/TC frequencies plotted over 
significantly large sampling months. All line graphs utilized the bold 
regions of the Table 1 clade distributions. Data found in Additional file 4: 
Table S4.  

Additional file 21. Figure S9: Purine/Pyrimidine (AG/TC) Frequency 
Distributions Consistent Across Clades and Time for ORF7a, ORF7b, ORF8 
and ORF10 Genes. Clades are represented by their Greek letter and cor‑
responding color for line graphs: Alpha—α (red), Beta/Mu—β/μ (blue), 
Gamma/Lambda—γ/λ (black), Delta—δ (orange), and Omicron—ο 
(green). Within each box plot, orange bars represent the median AG/TC 
frequency of each clade distribution, red dots represent outliers, and black 
boxes represent the first and third quartiles (often hidden behind the 
orange median bar). A) ORF7a gene AG/TC frequency distributions over 
selected months. B) ORF7a gene average AG/TC frequencies plotted over 
significantly large sampling months. C) ORF7b gene AG/TC frequency 
distributions over selected months. D) ORF7b gene average AG/TC fre‑
quencies plotted over significantly large sampling months. E) ORF8 gene 
AG/TC frequency distributions over selected months. F) ORF8 gene aver‑
age AG/TC frequencies plotted over significantly large sampling months. 
G) ORF10 gene AG/TC frequency distributions over selected months. H) 
ORF10 gene average AG/TC frequencies plotted over significantly large 
sampling months. All line graphs utilized the bold regions of the Table 1 
clade distributions. Data found in Additional file 4: Table S4. 

Additional file 22. Figure S10: The Majority of SARS‑CoV2 Codon Fre‑
quency Distributions Share > 40 Significant Differences Between Clades 
Across 32 Months. Each column represents the sum of the number of 
significant differences resulting from comparisons between clades for 
each codon frequency distribution per month (December 2019–July 
2022). Significance was determined based on a Bonferroni corrected alpha 
threshold, scaled by the number of tests ran per month. Data found in 
Additional file 7: Table S7.

Additional file 23. Figure S11: Codon Frequency Distributions Show 
Little Variation Over Time and Across Clades in ORF1ab, ORF3a, ORF3b 
and ORF6 Genes. Clades are represented by their Greek letter and cor‑
responding color for line graphs: Alpha—α (red), Beta/Mu—β/μ (blue), 
Gamma/Lambda—γ/λ (black), Delta—δ (orange), and Omicron—ο 
(green). Within each box plot, orange bars represent the median codon 
frequency of each clade distribution, red dots represent outliers, and 
black boxes represent the first and third quartiles (often hidden behind 
the orange median bar). Codons highlighted here were selected based 
on greatest number of significant differences between December 2019 
and July 2022 (Additional File 7: Table S7). A) ORF1ab gene CCT (proline) 
frequency distributions over selected months. B) ORF3a gene CAG 

(glutamine) frequency distributions over selected months. C) ORF3b gene 
TTA (leucine) frequency distributions over selected months. D) ORF6 gene 
GAC (aspartic acid) frequency distributions over selected months. All line 
graphs utilized the bold regions of the Table 1 clade distributions. Data 
found in Additional file 9: Table S9.

Additional file 24. Figure S12: Codon Usage of ORF7a, ORF7b, ORF8 
and ORF10 Remains Stable Between Clades and Over Time. Clades are 
represented by their Greek letter and corresponding color for line graphs: 
Alpha—α (red), Beta/Mu—β/μ (blue), Gamma/Lambda—γ/λ (black), 
Delta—δ (orange), and Omicron—ο (green). Within each box plot, orange 
bars represent the median codon frequency of each clade distribution, red 
dots represent outliers, and black boxes represent the first and third quar‑
tiles (often hidden behind the orange median bar). Codons highlighted 
here were selected based on greatest number of significant differences 
between December 2019 and July 2022 (Additional file 7: Table S7). A) 
ORF7a gene GTT (valine) frequency distributions over selected months. B) 
ORF7b gene TTG (leucine) frequency distributions over selected months. 
C) ORF8 gene CAA (glutamine) frequency distributions over selected 
months. D) ORF10 gene CTC (leucine) frequency distributions over 
selected months. All line graphs utilized the bold regions of the Table 1 
clade distributions. Data found in Additional file 9: Table S9. 

Additional file 25. Figure S13: Line Plots Showing Average CAI Over 
Time for All Genes. Panels A‑L refer to Spike, M, N, E, ORF1ab, ORF3a, 
ORF3b, ORF6, ORF7a, ORF7b, ORF8, and ORF10, respectively. Data is plot‑
ted only for the dates that are bolded & italicized in Table 1. 

Additional file 26. Figure S14: Line Plots Showing dN/dS Ratio Over Time 
for All Genes. Panels A‑L refer to Spike, M, N, E, ORF1ab, ORF3a, ORF3b, 
ORF6, ORF7a, ORF7b, ORF8, and ORF10, respectively. Data is plotted only 
for the dates that are bolded and italicized in Table 1.  

Additional file 27. Figure S15: Missense and Synonymous Mutations for 
SARS‑CoV‑2 Spike and Influenza Virus HA, Normalized for Sequence Count. 
Both axes represent individual codons, with each point on the heatmap 
representing a mutation from one codon to the other. Darker points on 
the heatmap represent more frequent mutations. Mutations within the 
black boxes are synonymous, and mutations outside these boxes are 
nonsynonymous. Each panel shows a heatmap generated from 15,000 
sequences of A) SARS‑CoV‑2 Delta Spike ranging from 10/2020‑06/2022, 
B) 15,000 SARS‑CoV‑2 Omicron Spike ranging from 11/2021‑07/2022, C) 
15,000 H1N1 HA ranging from 01/1989‑02/2019, and D) H3N2 HA ranging 
from 12/1980‑06/2022.

Additional file 28. Figure S16: Missense and Synonymous Mutations for 
SARS‑CoV‑2 Spike, Omicron and Delta, Comparison Between Full Cohort 
of Mutations and Rare Mutations Excluded. Both axes represent individual 
codons, with each point on the heatmap representing a mutation from 
one codon to the other. Darker points on the heatmap represent more 
frequent mutations. Mutations within the black boxes are synonymous, 
and mutations outside these boxes are nonsynonymous. Individual panels 
show heatmaps representing A) 1,407,663 SARS‑CoV‑2 Delta Spike Protein 
Sequences ranging from 10/2020‑06/2022, B) 1,407,663 SARS‑CoV‑2 Delta 
Spike Protein Sequences ranging from 10/2020‑06/2022, with mutations 
that are presenting in 2 or fewer sequences excluded,  C) 1,195,200 SARS‑
CoV‑2 Omicron Spike protein sequences ranging from 11/2021‑07/2022, 
and D) 1,195,200 SARS‑CoV‑2 Omicron Spike protein sequences ranging 
from 11/2021‑07/2022, with mutations that are presenting in 2 or fewer 
sequences excluded.

Additional file 29. Figure S17: Missense and Synonymous Mutations at 
High Entropy Positions Along Spike Sequence. For panels A and C, the Y 
axis represents codons, while the X axis represents positions along the 
Spike sequence for which entropy exceeds 0.1. Within the black boxes are 
codons synonymous to the WT codon, and within the red box is the WT 
codon at that position. For panels B and D, the Y axis represents nucleo‑
tides, while the X axis represents positions along the Spike sequence for 
which entropy exceeds 0.1 Within the red boxes are the WT nucleotides 
at that position. A) and B) show all SARS‑CoV‑2 Delta Spike protein 
sequences ranging from 10/2021‑06/2022. C) and D) show all SARS‑CoV‑2 
Omicron Spike sequences ranging from 11/2021‑07/2021.
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