23 research outputs found

    Draft Genome Sequence of Escherichia coli K-12 (ATCC 29425)

    Get PDF
    A draft genome sequence for Escherichia coli ATCC 29425 was investigated. The size of the genome was 4,608,319 bp, with an observed G+C content of 50.68%. This assembly consisted of 80 contigs, with an average coverage of 122.2×, including one contig representative of the complete genome for the temperate phage P1

    Draft Genome Sequence of Escherichia coli K-12 (ATCC 10798)

    Get PDF
    Here, we present the draft genome sequence of Escherichia coli ATCC 10798. E. coli ATCC 10798 is a K-12 strain, one of the most well-studied model microorganisms. The size of the genome was 4,685,496 bp, with a G+C content of 50.70%. This assembly consists of 62 contigs and the F plasmid

    Draft Genome Sequence of Micrococcus luteus (Schroeter) Cohn (ATCC 12698)

    Get PDF
    The actinobacterium Micrococcus luteus can be found in a wide variety of habitats. Here, we report the 2,411,958-bp draft genome sequence of the type strain M. leuteus (Schroeter) Cohn (ATCC 12698). Characteristic of this taxa, the genome sequence has a high G+C content, 73.14%

    Draft Genome Sequence of Enterococcus faecalis ATCC BAA-2128

    Get PDF
    While a part of the native gut microflora, the Gram-positive bacterium Enterococcus faecalis can lead to serious infections elsewhere in the body. The draft genome of E. faecalis strain ATCC BAA-2128, isolated from piglet feces, was examined. This draft genome consists of 42 contigs, 12 of which exhibit homology to annotated plasmids

    Draft Genome Sequences of Two ATCC Staphylococcus aureus subsp. aureus Strains

    Get PDF
    Draft genome sequences for Staphylococcus aureus subsp. aureus Rosenbach ATCC 14458 and ATCC 27217 strains were investigated. The genome sizes were 2,880,761 bp and 2,759,100 bp, respectively. Strain ATCC 14458 was assembled into 39 contigs, including 3 plasmids, and strain ATCC 27217 was assembled into 25 contigs, including 2 plasmids

    Impacts of 1.5°C Global Warming on Natural and Human Systems

    Get PDF
    An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate povert

    The genetic architecture of the human cerebral cortex

    Get PDF
    The cerebral cortex underlies our complex cognitive capabilities, yet little is known about the specific genetic loci that influence human cortical structure. To identify genetic variants that affect cortical structure, we conducted a genome-wide association meta-analysis of brain magnetic resonance imaging data from 51,665 individuals. We analyzed the surface area and average thickness of the whole cortex and 34 regions with known functional specializations. We identified 199 significant loci and found significant enrichment for loci influencing total surface area within regulatory elements that are active during prenatal cortical development, supporting the radial unit hypothesis. Loci that affect regional surface area cluster near genes in Wnt signaling pathways, which influence progenitor expansion and areal identity. Variation in cortical structure is genetically correlated with cognitive function, Parkinson's disease, insomnia, depression, neuroticism, and attention deficit hyperactivity disorder

    Impact of COVID-19 on cardiovascular testing in the United States versus the rest of the world

    Get PDF
    Objectives: This study sought to quantify and compare the decline in volumes of cardiovascular procedures between the United States and non-US institutions during the early phase of the coronavirus disease-2019 (COVID-19) pandemic. Background: The COVID-19 pandemic has disrupted the care of many non-COVID-19 illnesses. Reductions in diagnostic cardiovascular testing around the world have led to concerns over the implications of reduced testing for cardiovascular disease (CVD) morbidity and mortality. Methods: Data were submitted to the INCAPS-COVID (International Atomic Energy Agency Non-Invasive Cardiology Protocols Study of COVID-19), a multinational registry comprising 909 institutions in 108 countries (including 155 facilities in 40 U.S. states), assessing the impact of the COVID-19 pandemic on volumes of diagnostic cardiovascular procedures. Data were obtained for April 2020 and compared with volumes of baseline procedures from March 2019. We compared laboratory characteristics, practices, and procedure volumes between U.S. and non-U.S. facilities and between U.S. geographic regions and identified factors associated with volume reduction in the United States. Results: Reductions in the volumes of procedures in the United States were similar to those in non-U.S. facilities (68% vs. 63%, respectively; p = 0.237), although U.S. facilities reported greater reductions in invasive coronary angiography (69% vs. 53%, respectively; p < 0.001). Significantly more U.S. facilities reported increased use of telehealth and patient screening measures than non-U.S. facilities, such as temperature checks, symptom screenings, and COVID-19 testing. Reductions in volumes of procedures differed between U.S. regions, with larger declines observed in the Northeast (76%) and Midwest (74%) than in the South (62%) and West (44%). Prevalence of COVID-19, staff redeployments, outpatient centers, and urban centers were associated with greater reductions in volume in U.S. facilities in a multivariable analysis. Conclusions: We observed marked reductions in U.S. cardiovascular testing in the early phase of the pandemic and significant variability between U.S. regions. The association between reductions of volumes and COVID-19 prevalence in the United States highlighted the need for proactive efforts to maintain access to cardiovascular testing in areas most affected by outbreaks of COVID-19 infection

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    The Effect of Select Personal Care Ingredients and Simple Formulations on the Attachment of Bacteria on Polystyrene

    No full text
    The human body is covered with bacteria that are required for health and wellbeing. Additionally, there are pathogenic bacteria that are unwanted. It is therefore important to understand how personal care ingredients interact with these bacteria. To help understand these interactions, a high-throughput assay was developed to study the effect of personal care ingredients on attachment. Seventeen personal care ingredients were assayed singly and in simple alcohol based formulations. Three of the ingredients decreased the attachment of both bacteria tested by 90% singly and in formulation. Personal care ingredients singly and in simple formulations can prevent the attachment of bacteria. Further research is needed to better understand how personal care ingredients affect bacterial attachment and how these effects can be used to create new hygiene products for consumers
    corecore