19 research outputs found

    Lack of association between the Trp719Arg polymorphism in kinesin-like protein-6 and coronary artery disease in 19 case-control studies

    Get PDF

    Mapping and characterization of structural variation in 17,795 human genomes

    Get PDF
    A key goal of whole-genome sequencing for studies of human genetics is to interrogate all forms of variation, including single-nucleotide variants, small insertion or deletion (indel) variants and structural variants. However, tools and resources for the study of structural variants have lagged behind those for smaller variants. Here we used a scalable pipeline1 to map and characterize structural variants in 17,795 deeply sequenced human genomes. We publicly release site-frequency data to create the largest, to our knowledge, whole-genome-sequencing-based structural variant resource so far. On average, individuals carry 2.9 rare structural variants that alter coding regions; these variants affect the dosage or structure of 4.2 genes and account for 4.0–11.2% of rare high-impact coding alleles. Using a computational model, we estimate that structural variants account for 17.2% of rare alleles genome-wide, with predicted deleterious effects that are equivalent to loss-of-function coding alleles; approximately 90% of such structural variants are noncoding deletions (mean 19.1 per genome). We report 158,991 ultra-rare structural variants and show that 2% of individuals carry ultra-rare megabase-scale structural variants, nearly half of which are balanced or complex rearrangements. Finally, we infer the dosage sensitivity of genes and noncoding elements, and reveal trends that relate to element class and conservation. This work will help to guide the analysis and interpretation of structural variants in the era of whole-genome sequencing

    Novel Loci for Adiponectin Levels and Their Influence on Type 2 Diabetes and Metabolic Traits : A Multi-Ethnic Meta-Analysis of 45,891 Individuals

    Get PDF
    J. Kaprio, S. Ripatti ja M.-L. Lokki työryhmien jäseniä.Peer reviewe

    Bayesian inference analyses of the polygenic architecture of rheumatoid arthritis.

    No full text
    The genetic architectures of common, complex diseases are largely uncharacterized. We modeled the genetic architecture underlying genome-wide association study (GWAS) data for rheumatoid arthritis and developed a new method using polygenic risk-score analyses to infer the total liability-scale variance explained by associated GWAS SNPs. Using this method, we estimated that, together, thousands of SNPs from rheumatoid arthritis GWAS explain an additional 20% of disease risk (excluding known associated loci). We further tested this method on datasets for three additional diseases and obtained comparable estimates for celiac disease (43% excluding the major histocompatibility complex), myocardial infarction and coronary artery disease (48%) and type 2 diabetes (49%). Our results are consistent with simulated genetic models in which hundreds of associated loci harbor common causal variants and a smaller number of loci harbor multiple rare causal variants. These analyses suggest that GWAS will continue to be highly productive for the discovery of additional susceptibility loci for common diseases

    Chemokine-Guided Angiogenesis Directs Coronary Vasculature Formation in Zebrafish

    No full text
    Interruption of coronary blood supply severely impairs heart function with often-fatal consequences for heart disease patients. However the formation and maturation of these coronary vessels is not fully understood. Here we provide a detailed analysis of coronary vessel development in zebrafish. We observe that coronary vessels form in zebrafish by angiogenic sprouting of arterial cells derived from the endocardium at the atrioventricular canal. Endothelial cells express the CXC-motif chemokine receptor Cxcr4a and migrate to vascularize the ventricle under the guidance of the myocardium-expressed ligand Cxcl12b. cxcr4a mutant zebrafish fail to form a vascular network, whereas ectopic expression of Cxcl12b ligand induces coronary vessel formation. Importantly, cxcr4a mutant zebrafish fail to undergo heart regeneration following injury. Our results suggest that chemokine-signaling has an essential role in coronary vessel formation by directing migration of endocardium-derived endothelial cells. Poorly developed vasculature in cxcr4a mutants likely underlies decreased regenerative potential in adults

    From QTL to variety- Harnessing the benefits of QTLs for drought, flood and salt tolerance in mega rice varieties of India through a multi-institutional network.

    No full text
    Rice is a staple cereal of India cultivated in about 43.5 Mha area but with relatively low average productivity. Abiotic factors like drought, flood and salinity affect rice production adversely in more than 50% of this area. Breeding rice varieties with inbuilt tolerance to these stresses offers an economically viable and sustainable option to improve rice productivity. Availability of high quality reference genome sequence of rice, knowledge of exact position of genes/QTLs governing tolerance to abiotic stresses andavailability of DNA markers linked to these traits has opened up opportunities for breeders to transfer the favorable alleles into widely grown rice varieties through marker-assisted back cross breeding (MABB). Alarge multi-institutional project, “From QTL to variety: marker-assisted breeding of abiotic stress tolerant rice varieties with major QTLs for drought, submergence and salt tolerance” was initiated in 2010 with funding support from Department of Biotechnology, Government of India, in collaboration with Interna-tional Rice Research Institute, Philippines. The main focus of this project is to improve rice productivity inthe fragile ecosystems of eastern, northeastern and southern part of the country, which bear the brunt ofone or the other abiotic stresses frequently. Seven consistent QTLs for grain yield under drought, namely,qDTY1.1, qDTY2.1, qDTY2.2, qDTY3.1, qDTY3.2, qDTY9.1and qDTY12.1are being transferred into submergence IR64-Sub1. To address the problem of complete submergence due to flash floods in the major river basins,the Sub1 gene is being transferred into ten highly popular locally adapted rice varieties namely, ADT 39,ADT 46, Bahadur, HUR 105, MTU 1075, Pooja, Pratikshya, Rajendra Mahsuri, Ranjit, and Sarjoo 52. Further,to address the problem of soil salinity, Saltol, a major QTL for salt tolerance is being transferred into sevenpopular locally adapted rice varieties, namely, ADT 45, CR 1009, Gayatri, MTU 1010, PR 114, Pusa 44 andSarjoo 52. Genotypic background selection is being done after BC2F2stage using an in-house designed50K SNP chip on a set of twenty lines for each combination, identified with phenotypic similarity in the field to the recipient parent. Near-isogenic lines with more than 90% similarity to the recipient parentare now in advanced generation field trials. These climate smart varieties are expected to improve rice productivity in the adverse ecologies and contribute to the farmer’s livelihood
    corecore