36 research outputs found

    Constructing more informative plant–pollinator networks: visitation and pollen deposition networks in a heathland plant community

    Get PDF
    Interaction networks are widely used as tools to understand plant–pollinator communities, and to examine potential threats to plant diversity and food security if the ecosystem service provided by pollinating animals declines. However, most networks to date are based on recording visits to flowers, rather than recording clearly defined effective pollination events. Here we provide the first networks that explicitly incorporate measures of pollinator effectiveness (PE) from pollen deposition on stigmas per visit, and pollinator importance (PI) as the product of PE and visit frequency. These more informative networks, here produced for a low diversity heathland habitat, reveal that plant–pollinator interactions are more specialized than shown in most previous studies. At the studied site, the specialization index Embedded Image was lower for the visitation network than the PE network, which was in turn lower than Embedded Image for the PI network. Our study shows that collecting PE data is feasible for community-level studies in low diversity communities and that including information about PE can change the structure of interaction networks. This could have important consequences for our understanding of threats to pollination systems

    Pollinator importance networks illustrate the crucial value of bees in a highly speciose plant community

    Get PDF
    Accurate predictions of pollination service delivery require a comprehensive understanding of the interactions between plants and flower visitors. To improve measurements of pollinator performance underlying such predictions, we surveyed visitation frequency, pollinator effectiveness (pollen deposition ability) and pollinator importance (the product of visitation frequency and effectiveness) of flower visitors in a diverse Mediterranean flower meadow. With these data we constructed the largest pollinator importance network to date and compared it with the corresponding visitation network to estimate the specialisation of the community with greater precision. Visitation frequencies at the community level were positively correlated with the amount of pollen deposited during individual visits, though rarely correlated at lower taxonomic resolution. Bees had the highest levels of pollinator effectiveness, with Apis, Andrena, Lasioglossum and Osmiini bees being the most effective visitors to a number of plant species. Bomblyiid flies were the most effective non-bee flower visitors. Predictions of community specialisation (H2?) were higher in the pollinator importance network than the visitation network, mirroring previous studies. Our results increase confidence in existing measures of pollinator redundancy at the community level using visitation data, while also providing detailed information on interaction quality at the plant species level

    Quantifying nectar production by flowering plants in urban and rural landscapes

    Get PDF
    Floral resources (nectar and pollen) provide food for insect pollinators but have declined in the countryside due to land use change. Given widespread pollinator loss, it is important that we quantify their food supply to help develop conservation actions. While nectar resources have been measured in rural landscapes, equivalent data are lacking for urban areas, an important knowledge gap as towns and cities often host diverse pollinator populations. We quantified the nectar supply of urban areas, farmland and nature reserves in the UK by combining floral abundance and nectar sugar production data for 536 flowering plant taxa, allowing us to compare landscape types and assess the spatial distribution of nectar sugar among land uses within cities. The magnitude of nectar sugar production did not differ significantly among the three landscapes. In urban areas the nectar supply was more diverse in origin and predominantly delivered by non-native flowering plants. Within cities, urban land uses varied greatly in nectar sugar production. Gardens provided the most nectar sugar per unit area and 85% of all nectar at a city scale, while gardens and allotments produced the most diverse supplies of nectar sugar. Floral abundance, commonly used as a proxy for pollinators’ food supply, correlated strongly with nectar resources, but left a substantial proportion of the variation in nectar supply unexplained. Synthesis. We show that urban areas are hotspots of floral resource diversity rather than quantity and their nectar supply is underpinned by the contribution of residential gardens. Individual gardeners have an important role to play in pollinator conservation as ornamental plants, usually non-native in origin, are a key source of nectar in towns and cities

    A horizon scan of future threats and opportunities for pollinators and pollination

    Get PDF
    Background. Pollinators, which provide the agriculturally and ecologically essential service of pollination, are under threat at a global scale. Habitat loss and homogenisation, pesticides, parasites and pathogens, invasive species, and climate change have been identified as past and current threats to pollinators. Actions to mitigate these threats, e.g., agri-environment schemes and pesticide-use moratoriums, exist, but have largely been applied post-hoc. However, future sustainability of pollinators and the service they provide requires anticipation of potential threats and opportunities before they occur, enabling timely implementation of policy and practice to prevent, rather than mitigate, further pollinator declines. Methods.Using a horizon scanning approach we identified issues that are likely to impact pollinators, either positively or negatively, over the coming three decades. Results.Our analysis highlights six high priority, and nine secondary issues. High priorities are: (1) corporate control of global agriculture, (2) novel systemic pesticides, (3) novel RNA viruses, (4) the development of new managed pollinators, (5) more frequent heatwaves and drought under climate change, and (6) the potential positive impact of reduced chemical use on pollinators in non-agricultural settings. Discussion. While current pollinator management approaches are largely driven by mitigating past impacts, we present opportunities for pre-emptive practice, legislation, and policy to sustainably manage pollinators for future generations

    Large herbivores transform plant-pollinator networks in an African savanna

    Get PDF
    Pollination by animals is a key ecosystem service1,2 and interactions between plants and their pollinators are a model system for studying ecological networks,3,4 yet plant-pollinator networks are typically studied in isolation from the broader ecosystems in which they are embedded. The plants visited by pollinators also interact with other consumer guilds that eat stems, leaves, fruits, or seeds. One such guild, large mammalian herbivores, are well-known ecosystem engineers5, 6, 7 and may have substantial impacts on plant-pollinator networks. Although moderate herbivory can sometimes promote plant diversity,8 potentially benefiting pollinators, large herbivores might alternatively reduce resource availability for pollinators by consuming flowers,9 reducing plant density,10 and promoting somatic regrowth over reproduction.11 The direction and magnitude of such effects may hinge on abiotic context—in particular, rainfall, which modulates the effects of ungulates on vegetation.12 Using a long-term, large-scale experiment replicated across a rainfall gradient in central Kenya, we show that a diverse assemblage of native large herbivores, ranging from 5-kg antelopes to 4,000-kg African elephants, limited resource availability for pollinators by reducing flower abundance and diversity; this in turn resulted in fewer pollinator visits and lower pollinator diversity. Exclusion of large herbivores increased floral-resource abundance and pollinator-assemblage diversity, rendering plant-pollinator networks larger, more functionally redundant, and less vulnerable to pollinator extinction. Our results show that species extrinsic to plant-pollinator interactions can indirectly and strongly alter network structure. Forecasting the effects of environmental change on pollination services and interaction webs more broadly will require accounting for the effects of extrinsic keystone species
    corecore