8 research outputs found

    Inhibitors of dihydroorotate dehydrogenase cooperate with molnupiravir and N4-hydroxycytidine to suppress SARS-CoV-2 replication

    Get PDF
    The nucleoside analog N4-hydroxycytidine (NHC) is the active metabolite of the prodrug molnupiravir, which has been approved for the treatment of COVID-19. SARS-CoV-2 incorporates NHC into its RNA, resulting in defective virus genomes. Likewise, inhibitors of dihydroorotate dehydrogenase (DHODH) reduce virus yield upon infection, by suppressing the cellular synthesis of pyrimidines. Here, we show that NHC and DHODH inhibitors strongly synergize in the inhibition of SARS-CoV-2 replication in vitro. We propose that the lack of available pyrimidine nucleotides upon DHODH inhibition increases the incorporation of NHC into nascent viral RNA. This concept is supported by the rescue of virus replication upon addition of pyrimidine nucleosides to the media. DHODH inhibitors increased the antiviral efficiency of molnupiravir not only in organoids of human lung, but also in Syrian Gold hamsters and in K18-hACE2 mice. Combining molnupiravir with DHODH inhibitors may thus improve available therapy options for COVID-19

    Inhibitors of dihydroorotate dehydrogenase cooperate with molnupiravir and N4-hydroxycytidine to suppress SARS-CoV-2 replication

    Get PDF
    Funding Information: We thank Thorsten Wolff, Daniel Bourquain, Jessica Schulz, and Christian Mache from the Robert-Koch Institute and Martin Beer from the Friedrich Loeffler Institute (FLI) for providing isolates of SARS-CoV-2 variants. We thank Anna Kraft and Gabriele Czerwinski (both FLI) for support in the preparation of samples for pathology, and Catherine Hambly (University of Aberdeen) for help with daily energy expenditure measurements. We would like to thank Cathrin Bierwirth (University Medical Center Göttingen), Isabell Schulz, Anne-Kathrin Donner, and Frank-Thorben Peters for excellent technician assistance and Jasmin Fertey and Alexandra Rockstroh for providing the virus stocks for the mice experiment (Fraunhofer Institute IZI Leipzig). We acknowledge support by the Open Access Publication Funds of the Göttingen University. KMS was a member of the Göttingen Graduate School GGNB during this work. This work was funded by the COVID-19 Forschungsnetzwerk Niedersachsen (COFONI) to MD, by the Federal Ministry of Education and Research Germany ( Bundesministerium fĂŒr Bildung und Forschung; BMBF ; OrganSARS , 01KI2058 ) to SP and TM, and by a grant of the Max Planck Foundation to DG. Declaration of interests AS, HK, EP, and DV are employees of Immunic AG and own shares and/or stock-options of the parent company of Immunic AG, Immunic Inc. Some of the Immunic AG employees also hold patents for the Immunic compounds described in this manuscript (WO2012/001,148, WO03006425). KMS, AD, and MD are employees of University Medical Center Göttingen, which has signed a License Agreement with Immunic AG covering the combination of DHODH inhibitors and nucleoside analogs to treat viral infections, including COVID-19 (inventors: MD, KMS, and AD). The other authors declare no conflict of interest.Peer reviewedPublisher PD

    Variants associated withHHIP expression have sex-differential effects on lung function

    Get PDF
    Publisher Copyright: © 2020 Fawcett KA et al.Background: Lung function is highly heritable and differs between the sexes throughout life. However, little is known about sex-differential genetic effects on lung function. We aimed to conduct the first genome-wide genotype-by-sex interaction study on lung function to identify genetic effects that differ between males and females. Methods: We tested for interactions between 7,745,864 variants and sex on spirometry-based measures of lung function in UK Biobank (N=303,612), and sought replication in 75,696 independent individuals from the SpiroMeta consortium. Results: Five independent single-nucleotide polymorphisms (SNPs) showed genome-wide significant (P<5x10 -8) interactions with sex on lung function, and 21 showed suggestive interactions (P<1x10 -6). The strongest signal, from rs7697189 (chr4:145436894) on forced expiratory volume in 1 second (FEV 1) (P=3.15x10 -15), was replicated (P=0.016) in SpiroMeta. The C allele increased FEV 1 more in males (untransformed FEV 1 ÎČ=0.028 [SE 0.0022] litres) than females (ÎČ=0.009 [SE 0.0014] litres), and this effect was not accounted for by differential effects on height, smoking or pubertal age. rs7697189 resides upstream of the hedgehog-interacting protein ( HHIP) gene and was previously associated with lung function and HHIP lung expression. We found HHIP expression was significantly different between the sexes (P=6.90x10 -6), but we could not detect sex differential effects of rs7697189 on expression. Conclusions: We identified a novel genotype-by-sex interaction at a putative enhancer region upstream of the HHIP gene. Establishing the mechanism by which HHIP SNPs have different effects on lung function in males and females will be important for our understanding of lung health and diseases in both sexes.Peer reviewe

    Variants associated with HHIP expression have sexdifferential effects on lung function

    Get PDF
    Background: Lung function is highly heritable and differs between the sexes throughout life. However, little is known about sex-differential genetic effects on lung function. We aimed to conduct the first genome-wide genotype-by-sex interaction study on lung function to identify genetic effects that differ between males and females.Methods: We tested for interactions between 7,745,864 variants and sex on spirometry-based measures of lung function in UK Biobank (N=303,612), and sought replication in 75,696 independent individuals from the SpiroMeta consortium.Results: Five independent single-nucleotide polymorphisms (SNPs) showed genome-wide significant (P-8) interactions with sex on lung function, and 21 showed suggestive interactions (P-6). The strongest signal, from rs7697189 (chr4:145436894) on forced expiratory volume in 1 second (FEV1) (P=3.15x10-15), was replicated (P=0.016) in SpiroMeta. The C allele increased FEV1 more in males (untransformed FEV1 ÎČ=0.028 [SE 0.0022] litres) than females (ÎČ=0.009 [SE 0.0014] litres), and this effect was not accounted for by differential effects on height, smoking or pubertal age. rs7697189 resides upstream of the hedgehog-interacting protein (HHIP) gene and was previously associated with lung function and HHIP lung expression. We found HHIP expression was significantly different between the sexes (P=6.90x10-6), but we could not detect sex differential effects of rs7697189 on expression.Conclusions: We identified a novel genotype-by-sex interaction at a putative enhancer region upstream of the HHIP gene. Establishing the mechanism by which HHIP SNPs have different effects on lung function in males and females will be important for our understanding of lung health and diseases in both sexes.</p

    Sixteen new lung function signals identified through 1000 Genomes Project reference panel imputation

    Get PDF
    Lung function measures are used in the diagnosis of chronic obstructive pulmonary disease. In 38,199 European ancestry individuals, we studied genome-wide association of forced expiratory volume in 1 s (FEV1), forced vital capacity (FVC) and FEV1/FVC with 1000 Genomes Project (phase 1)-imputed genotypes and followed up top associations in 54,550 Europeans. We identify 14 novel loci (P <5 x 10(-8)) in or near ENSA, RNU5F-1, KCNS3, AK097794, ASTN2, LHX3, CCDC91, TBX3, TRIP11, RIN3, TEKT5, LTBP4, MN1 and AP1S2, and two novel signals at known loci NPNT and GPR126, providing a basis for new understanding of the genetic determinants of these traits and pulmonary diseases in which they are altered.Peer reviewe

    Sixteen new lung function signals identified through 1000 Genomes Project reference panel imputation

    No full text
    Lung function measures are used in the diagnosis of chronic obstructive pulmonary disease. In 38,199 European ancestry individuals, we studied genome-wide association of forced expiratory volume in one second (FEV1), forced vital capacity (FVC) and FEV1/FVC with 1000 Genomes Project (Phase 1) imputed genotypes and followed up top associations in 54,550 Europeans. We identify 14 novel loci (P<5x10-8) in or near ENSA, RNU5F-1, KCNS3, AK097794, ASTN2, LHX3, CCDC91, TBX3, TRIP11, RIN3, TEKT5, LTBP4, MN1, AP1S2, and two novel signals at known loci NPNT and GPR126, providing a basis for new understanding of the genetic determinants of these traits and pulmonary diseases in which they are altered

    Genome-wide association study identifies five loci associated with lung function

    Get PDF
    Pulmonary function measures are heritable traits that predict morbidity and mortality and define chronic obstructive pulmonary disease (COPD). We tested genome-wide association with forced expiratory volume in 1 s (FEV1) and the ratio of FEV1 to forced vital capacity (FVC) in the SpiroMeta consortium (n = 20,288 individuals of European ancestry). We conducted a meta-analysis of top signals with data from direct genotyping (n ≀ 32,184 additional individuals) and in silico summary association data from the CHARGE Consortium (n = 21,209) and the Health 2000 survey (n ≀ 883). We confirmed the reported locus at 4q31 and identified associations with FEV1 or FEV1/FVC and common variants at five additional loci: 2q35 in TNS1 (P = 1.11 × 10−12), 4q24 in GSTCD (2.18 × 10−23), 5q33 in HTR4 (P = 4.29 × 10−9), 6p21 in AGER (P = 3.07 × 10−15) and 15q23 in THSD4 (P = 7.24 × 10−15). mRNA analyses showed expression of TNS1, GSTCD, AGER, HTR4 and THSD4 in human lung tissue. These associations offer mechanistic insight into pulmonary function regulation and indicate potential targets for interventions to alleviate respiratory disease.peerReviewe

    Genome-wide association and large-scale follow up identifies 16 new loci influencing lung function

    Get PDF
    Pulmonary function measures reflect respiratory health and are used in the diagnosis of chronic obstructive pulmonary disease. We tested genome-wide association with forced expiratory volume in 1 second and the ratio of forced expiratory volume in 1 second to forced vital capacity in 48,201 individuals of European ancestry with follow up of the top associations in up to an additional 46,411 individuals. We identified new regions showing association (combined P &lt; 5 × 10?8) with pulmonary function in or near MFAP2, TGFB2, HDAC4, RARB, MECOM (also known as EVI1), SPATA9, ARMC2, NCR3, ZKSCAN3, CDC123, C10orf11, LRP1, CCDC38, MMP15, CFDP1 and KCNE2. Identification of these 16 new loci may provide insight into the molecular mechanisms regulating pulmonary function and into molecular targets for future therapy to alleviate reduced lung function
    corecore