29 research outputs found

    Catalytic Upgrading of Biomass Model Compounds: Novel Approaches and Lessons Learnt from Traditional Hydrodeoxygenation – a Review

    Get PDF
    Catalytic hydrodeoxygenation (HDO) is a fundamental process for bio‐resources upgrading to produce transportation fuels or added value chemicals. The bottleneck of this technology to be implemented at commercial scale is its dependence on high pressure hydrogen, an expensive resource which utilization also poses safety concerns. In this scenario, the development of hydrogen‐free alternatives to facilitate oxygen removal in biomass derived compounds is a major challenge for catalysis science but at the same time it could revolutionize biomass processing technologies. In this review we have analysed several novel approaches, including catalytic transfer hydrogenation (CTH), combined reforming and hydrodeoxygenation, metal hydrolysis and subsequent hydrodeoxygenation along with non‐thermal plasma (NTP) to avoid the supply of external H2. The knowledge accumulated from traditional HDO sets the grounds for catalysts and processes development among the hydrogen alternatives. In this sense, mechanistic aspects for HDO and the proposed alternatives are carefully analysed in this work. Biomass model compounds are selected aiming to provide an in‐depth description of the different processes and stablish solid correlations catalysts composition‐catalytic performance which can be further extrapolated to more complex biomass feedstocks. Moreover, the current challenges and research trends of novel hydrodeoxygenation strategies are also presented aiming to spark inspiration among the broad community of scientists working towards a low carbon society where bio‐resources will play a major role.Financial support for this work was provided by the Department of Chemical and Process Engineering of the University of Surrey and the EPSRC grants EP/J020184/2 and EP/R512904/1 as well as the Royal Society Research Grant RSGR1180353. Authors would also like to acknowledge the Ministerio de Economía, Industriay Competitividad of Spain (Project MAT2013‐45008‐P) and the Chinese Scholarship Council (CSC). LPP also thanks Comunitat Valenciana for her postdoctoral fellow (APOSTD2017)

    Cross-Aldol Condensation of Acetone and n-Butanol into Aliphatic Ketones over Supported Cu Catalysts on Ceria-Zirconia

    No full text
    A long-chain hydrocarbon biofuel of jet fuel range can be produced via aldol condensation of fermented products such as acetone and alcohols over the catalysts containing both metallic sites for the dehydrogenation of alcohols and basic sites for the condensation reaction. However, an efficient catalyst system has not been studied widely yet the route is promising for biofuel production. In this work, Cu catalysts supported on ceria-zirconia (Cu/xCeZr) were prepared using coprecipitated CexZr1-xO2 supports with different Ce/Zr ratios for the cross-aldol condensation of acetone and n-butanol into mono- and di-alkylated aliphatic ketones, 2-heptanone and 6-undecanone. The acetone conversion and 6-undecanone selectivity increased with specific Cu surface area due to formation of the dehydrogenation product butyraldehyde at a higher concentration. The total yield of cross-aldol condensation products was strongly dependent on a combination of Cu sites and basic sites. This was confirmed by the results in the reaction between acetone and butyraldehyde over supported Cu catalysts that additionally examined the adsorbed acyl species on Cu surface taking part in the aldol condensation reaction. The best catalytic performance was achieved with Cu/0.8CeZr showing the largest Cu surface and the highest base site density among Cu/xCeZr catalysts. While the activity of Cu/0.8CeZ was comparable to or a little higher than that of Cu/MgO, the former catalyst was more stable than the latter suffering from the transformation of MgO to Mg(OH)2 by the reaction. Consequently, it is suggested that Cu supported on ceria-zirconia of ceria rich contains such a dual function that it can efficiently catalyze the cross-aldol condensation of acetone and n-butanol
    corecore