6,902 research outputs found
Learning to Construct 3D Building Wireframes from 3D Line Clouds
Line clouds, though under-investigated in the previous work, potentially
encode more compact structural information of buildings than point clouds
extracted from multi-view images. In this work, we propose the first network to
process line clouds for building wireframe abstraction. The network takes a
line cloud as input , i.e., a nonstructural and unordered set of 3D line
segments extracted from multi-view images, and outputs a 3D wireframe of the
underlying building, which consists of a sparse set of 3D junctions connected
by line segments. We observe that a line patch, i.e., a group of neighboring
line segments, encodes sufficient contour information to predict the existence
and even the 3D position of a potential junction, as well as the likelihood of
connectivity between two query junctions. We therefore introduce a two-layer
Line-Patch Transformer to extract junctions and connectivities from sampled
line patches to form a 3D building wireframe model. We also introduce a
synthetic dataset of multi-view images with ground-truth 3D wireframe. We
extensively justify that our reconstructed 3D wireframe models significantly
improve upon multiple baseline building reconstruction methods. The code and
data can be found at https://github.com/Luo1Cheng/LC2WF.Comment: 10 pages, 6 figure
Truth Forest: Toward Multi-Scale Truthfulness in Large Language Models through Intervention without Tuning
Despite the great success of large language models (LLMs) in various tasks,
they suffer from generating hallucinations. We introduce Truth Forest, a method
that enhances truthfulness in LLMs by uncovering hidden truth representations
using multi-dimensional orthogonal probes. Specifically, it creates multiple
orthogonal bases for modeling truth by incorporating orthogonal constraints
into the probes. Moreover, we introduce Random Peek, a systematic technique
considering an extended range of positions within the sequence, reducing the
gap between discerning and generating truth features in LLMs. By employing this
approach, we improved the truthfulness of Llama-2-7B from 40.8\% to 74.5\% on
TruthfulQA. Likewise, significant improvements are observed in fine-tuned
models. We conducted a thorough analysis of truth features using probes. Our
visualization results show that orthogonal probes capture complementary
truth-related features, forming well-defined clusters that reveal the inherent
structure of the dataset.Comment: Accepted as AAAI 202
One-step deposition of nano-to-micron-scalable, high-quality digital image correlation patterns for high-strain in-situ multi-microscopy testing
Digital Image Correlation (DIC) is of vital importance in the field of
experimental mechanics, yet, producing suitable DIC patterns for demanding
in-situ mechanical tests remains challenging, especially for ultra-fine
patterns, despite the large number of patterning techniques in the literature.
Therefore, we propose a simple, flexible, one-step technique (only requiring a
conventional deposition machine) to obtain scalable, high-quality, robust DIC
patterns, suitable for a range of microscopic techniques, by deposition of a
low melting temperature solder alloy in so-called 'island growth' mode, without
elevating the substrate temperature. Proof of principle is shown by
(near-)room-temperature deposition of InSn patterns, yielding highly dense,
homogeneous DIC patterns over large areas with a feature size that can be tuned
from as small as 10nm to 2um and with control over the feature shape and
density by changing the deposition parameters. Pattern optimization, in terms
of feature size, density, and contrast, is demonstrated for imaging with atomic
force microscopy, scanning electron microscopy (SEM), optical microscopy and
profilometry. Moreover, the performance of the InSn DIC patterns and their
robustness to large deformations is validated in two challenging case studies
of in-situ micro-mechanical testing: (i) self-adaptive isogeometric digital
height correlation of optical surface height profiles of a coarse, bimodal InSn
pattern providing microscopic 3D deformation fields (illustrated for
delamination of aluminum interconnects on a polyimide substrate) and (ii) DIC
on SEM images of a much finer InSn pattern allowing quantification of high
strains near fracture locations (illustrated for rupture of a Fe foil). As
such, the high controllability, performance and scalability of the DIC patterns
offers a promising step towards more routine DIC-based in-situ micro-mechanical
testing.Comment: Accepted for publication in Strai
Removal of recalcitrant organic compounds from an industrial complex effluent by heterogeneous Fenton-type treatment
Because of their chemical complexity, industrial chemi-mechanical pulping effluents are evaporated and burned, in spite of the high associated cost involved in these processes. The aim of this study was to remove recalcitrant compounds from this kind of wastewater using a Fenton-type treatment. The main parameters involved in the process and their influence on the results were determined. Homemade catalysts based on CuO, Fe2O3, NiO and ZnO, supported on Îł-Al2O3 have been tested for catalytic oxidation, and the CuO/Îł- Al2O3 catalysts showed the greatest effect on total organic carbon (TOC) reduction (52.7%). A series of twolevel factorial experiments was subsequently applied to evaluate the most favorable range of conditions for CuO/Îł-Al2O3 application. The studied variables were hydrogen peroxide concentration ([H2O2], g/L), active phase content (metal oxide supported on alumina, %), mass of catalyst (metal oxide/alumina system, g), and reaction temperature (°C). The highest reduction of all parameters was obtained at the superior level of all variables with CuO/Îł-Al2O3, achieving reductions of chemical oxygen demand (COD) and TOC between 40 and 50%. Increasing catalyst mass did not produce additional benefit. This variable has a significant effect only on the reduction of aromatic compounds. At its low level, reduction in aromatic content exceeded 80%. Color reduction was influenced only by temperature (maximum reduction of 90%)Fil: Covinich, Laura Gabriela. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - Nordeste. Instituto de Materiales de Misiones. Universidad Nacional de Misiones. Facultad de Ciencias Exactas QuĂmicas y Naturales. Instituto de Materiales de Misiones; ArgentinaFil: Felissia, Fernando Esteban. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - Nordeste. Instituto de Materiales de Misiones. Universidad Nacional de Misiones. Facultad de Ciencias Exactas QuĂmicas y Naturales. Instituto de Materiales de Misiones; ArgentinaFil: Fenoglio, Rosa Juana. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y TecnologĂa de Materiales. Universidad Nacional de Mar del Plata. Facultad de IngenierĂa. Instituto de Investigaciones en Ciencia y TecnologĂa de Materiales; ArgentinaFil: Area, Maria Cristina. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - Nordeste. Instituto de Materiales de Misiones. Universidad Nacional de Misiones. Facultad de Ciencias Exactas QuĂmicas y Naturales. Instituto de Materiales de Misiones; Argentin
Distinguishing two-component anomalous Hall effect from topological Hall effect in magnetic topological insulator MnBi2Te4
In transport, the topological Hall effect (THE) is widely interpreted as a
sign of chiral spin textures, like magnetic skyrmions. However, the
co-existence of two anomalous Hall effects (AHE) could give rise to similar
non-monotonic features or "humps", making it difficult to distinguish between
the two. Here we demonstrate that the "artifact" two-component anomalous Hall
effect can be clearly distinguished from the genuine topological Hall effect by
three methods: 1. Minor loops 2. Temperature dependence 3. Gate dependence. One
of the minor loops is a single loop that cannot fit into the full AHE loop
under the assumption of AHE+THE. In addition, by increasing the temperature or
tuning the gate bias, the emergence of humps is accompanied by a polarity
change of the AHE. Using these three methods, one can find the humps are from
another AHE loop with a different polarity. Our material is a magnetic
topological insulator MnBi2Te4 grown by molecular beam epitaxy, where the
presence of the secondary phase MnTe2 on the surface contributes to the extra
positive AHE component. Our work may help future researchers to exercise
cautions and use these three methods to examine carefully in order to ascertain
genuine topological Hall effect
The association between normal BMI with central adiposity and proinflammatory potential immunoglobulin G N-Glycosylation
Background: The mechanism by which normal body mass index (BMI) with central adiposity (NWCA) increases the risk of the diseases has not been completely elucidated. The inflammatory role of immunoglobulin G (IgG) N-glycosylation in obesity defined by BMI or central adiposity defined by waist-to-hip ratio (WHR) was reported, respectively. We undertook this three-center cross-sectional study to determine the association between the IgG N-glycans and NWCA. Methods: The participants were categorized into four different phenotypes: normal BMI with normal WHR (NW), normal BMI with central adiposity (NWCA), obesity with normal WHR (ONCA) and obesity with central adiposity (OCA). The IgG N-glycans were analyzed using ultra-performance liquid chromatography analysis of released glycans, and differences among groups were compared. Results: In total, 17 out of 24 initial IgG N-glycans were significantly different among the four groups (NW, ONCA, NWCA and OCA) (P\u3c0.05/6*78=0.0001). The changes of IgG glycans in central obesity (12 GPs) were more than those in obesity (3 GPs). In addition, lower galactosylation and bisecting GlcNAc and higher fucosylation were associated with increased risk of NWCA. Conclusion: Central obesity was involved in more changes of IgG N-glycosylation representing stronger inflammation than obesity, which might make a greater contribution to the risk of related disorders. NWCA was associated with an increased pro-inflammatory of IgG N-glycosylation, which was accompanied by the development of central obesity and other related disorders
Effects of Fe self-ion irradiation on a low carbon MX-ODS steel at 550°C
Oxide Dispersion Strengthened (ODS) steels with nano-scale oxides have become one of the candidate materials used in advanced nuclear reactor systems. A novel MX-ODS steel with extremely low carbon content was irradiated with 3 MeV Fe ions at 550°C up to peak damage of 70 dpa. The steel contains uniformly distributed Y2O3 nano-precipitates with an average size of 3.5 nm and a number density of 5 à 1022/m3. A V-rich shell was found surrounding the core of Y, O, and Si at some particles. Two types of large precipitates, Y-Ta-Si oxides, and VN, were observed in the steel instead of carbides. Voids of very small size are present due to irradiation and the calculated void swelling was only 0.004%, suggesting good irradiation tolerance of the MX-ODS steel in this study. Fine and dense oxide nano-precipitates and their shell-core structure remained stable while the shape of large precipitates changed after irradiation
Elevated GM3 plasma concentration in idiopathic Parkinsonâs disease: A lipidomic analysis
Parkinsonâs disease (PD) is a common neurodegenerative disease whose pathological hallmark is the accumulation of intracellular α-synuclein aggregates in Lewy bodies. Lipid metabolism dysregulation may play a significant role in PD pathogenesis; however, large plasma lipidomic studies in PD are lacking. In the current study, we analyzed the lipidomic profile of plasma obtained from 150 idiopathic PD patients and 100 controls, taken from the âSpotâ study at Columbia University Medical Center in New York. Our mass spectrometry based analytical panel consisted of 520 lipid species from 39 lipid subclasses including all major classes of glycerophospholipids, sphingolipids, glycerolipids and sterols. Each lipid species was analyzed using a logistic regression model. The plasma concentrations of two lipid subclasses, triglycerides and monosialodihexosylganglioside (GM3), were different between PD and control participants. GM3 ganglioside concentration had the most significant difference between PD and controls (1.531±0.037 pmol/ÎŒl versus 1.337±0.040 pmol/ÎŒl respectively; p-value = 5.96E-04; q-value = 0.048; when normalized to total lipid: p-value = 2.890E-05; q-value = 2.933E-03). Next, we used a collection of 20 GM3 and glucosylceramide (GlcCer) species concentrations normalized to total lipid to perform a ROC curve analysis, and found that these lipids compare favorably with biomarkers reported in previous studies (AUC = 0.742 for males, AUC = 0.644 for females). Our results suggest that higher plasma GM3 levels are associated with PD. GM3 lies in the same glycosphingolipid metabolic pathway as GlcCer, a substrate of the enzyme glucocerebrosidase, which has been associated with PD. These findings are consistent with previous reports implicating lower glucocerebrosidase activity with PD risk
Ultrafast nonthermal terahertz electrodynamics and possible quantum energy transfer in the Nb3Sn superconductor
We report terahertz (THz) electrodynamics of a moderately clean A15 superconductor (SC) following ultrafast excitation to manipulate quasiparticle (QP) transport. In the Martensitic normal state, we observe a photo enhancement in the THz conductivity using optical pulses, while the opposite is observed for the THz pump. This demonstrates wavelength-selective nonthermal control of conductivity distinct from sample heating. The photo enhancement persists up to an additional critical temperature, above the SC one, from a competing electronic order. In the SC state, the fluence dependence of pair-breaking kinetics together with an analytic model provides an implication for a âone photon to one Cooper pairâ nonresonant energy transfer during the 35-fs laser pulse; i.e., the fitted photon energy âÏ absorption to create QPs set by 2ÎSC/âÏ=0.33%. This is more than one order of magnitude smaller than in previously studied BCS SCs, which we attribute to strong electron-phonon coupling and possible influence of phonon condensation
The cosmological simulation code GADGET-2
We discuss the cosmological simulation code GADGET-2, a new massively
parallel TreeSPH code, capable of following a collisionless fluid with the
N-body method, and an ideal gas by means of smoothed particle hydrodynamics
(SPH). Our implementation of SPH manifestly conserves energy and entropy in
regions free of dissipation, while allowing for fully adaptive smoothing
lengths. Gravitational forces are computed with a hierarchical multipole
expansion, which can optionally be applied in the form of a TreePM algorithm,
where only short-range forces are computed with the `tree'-method while
long-range forces are determined with Fourier techniques. Time integration is
based on a quasi-symplectic scheme where long-range and short-range forces can
be integrated with different timesteps. Individual and adaptive short-range
timesteps may also be employed. The domain decomposition used in the
parallelisation algorithm is based on a space-filling curve, resulting in high
flexibility and tree force errors that do not depend on the way the domains are
cut. The code is efficient in terms of memory consumption and required
communication bandwidth. It has been used to compute the first cosmological
N-body simulation with more than 10^10 dark matter particles, reaching a
homogeneous spatial dynamic range of 10^5 per dimension in a 3D box. It has
also been used to carry out very large cosmological SPH simulations that
account for radiative cooling and star formation, reaching total particle
numbers of more than 250 million. We present the algorithms used by the code
and discuss their accuracy and performance using a number of test problems.
GADGET-2 is publicly released to the research community.Comment: submitted to MNRAS, 31 pages, 20 figures (reduced resolution), code
available at http://www.mpa-garching.mpg.de/gadge
- âŠ