Abstract

Digital Image Correlation (DIC) is of vital importance in the field of experimental mechanics, yet, producing suitable DIC patterns for demanding in-situ mechanical tests remains challenging, especially for ultra-fine patterns, despite the large number of patterning techniques in the literature. Therefore, we propose a simple, flexible, one-step technique (only requiring a conventional deposition machine) to obtain scalable, high-quality, robust DIC patterns, suitable for a range of microscopic techniques, by deposition of a low melting temperature solder alloy in so-called 'island growth' mode, without elevating the substrate temperature. Proof of principle is shown by (near-)room-temperature deposition of InSn patterns, yielding highly dense, homogeneous DIC patterns over large areas with a feature size that can be tuned from as small as 10nm to 2um and with control over the feature shape and density by changing the deposition parameters. Pattern optimization, in terms of feature size, density, and contrast, is demonstrated for imaging with atomic force microscopy, scanning electron microscopy (SEM), optical microscopy and profilometry. Moreover, the performance of the InSn DIC patterns and their robustness to large deformations is validated in two challenging case studies of in-situ micro-mechanical testing: (i) self-adaptive isogeometric digital height correlation of optical surface height profiles of a coarse, bimodal InSn pattern providing microscopic 3D deformation fields (illustrated for delamination of aluminum interconnects on a polyimide substrate) and (ii) DIC on SEM images of a much finer InSn pattern allowing quantification of high strains near fracture locations (illustrated for rupture of a Fe foil). As such, the high controllability, performance and scalability of the DIC patterns offers a promising step towards more routine DIC-based in-situ micro-mechanical testing.Comment: Accepted for publication in Strai

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 10/07/2019
    Last time updated on 28/10/2020