847 research outputs found

    N2H+ Observations of Molecular Cloud Cores in Taurus

    Full text link
    N2H+ observations of molecular cloud cores in Taurus with the Nobeyama 45 m radio telescope are reported. We compare ``cores with young stars'' with ``cores without young stars''. The differences in core radius, linewidth, and core mass are small. Linewidth is dominated by thermal motions in both cases. N2H+ maps show that the intensity distribution does not differ much between cores without stars and those with stars. This is in contrast to the result previously obtained in H13CO+ toward Taurus molecular cloud cores. Larger degree of depletion of H13CO+ in starless cores will be one possible explanation for this difference. We studied the physical state of molecular cloud cores in terms of ``critical pressure'' for the surface (external) pressure. There is no systematic difference between starless cores and cores with stars in this analysis. Both are not far from the critical state for pressure equilibrium. We suggest that molecular cloud cores in which thermal support is dominated evolve toward star formation by keeping close to the critical state. This result is in contrast with that obtained in the intermediate-mass star forming region OMC-2/3, where molecular cloud cores evolve by decreasing the critical pressure appreciably. We investigate the radial distribution of the integrated intensity. Cores with stars are found to have shallow (-1.8 to -1.6) power-law density profiles.Comment: 19 pages, 5 figure

    Wide-Field Infrared Imaging Polarimetry of the NGC 6334 Region: A Nest of Infrared Reflection Nebulae

    Full text link
    We report the detection of eighteen infrared reflection nebulae (IRNe) in the JJ, HH, & KsKs linear polarimetric observations of the NGC 6334 massive star-formation complex, of which 16 IRNe are new discoveries. Our images cover \sim180 square arcminutes, one of the widest near-infrared polarization data in star-formation regions so far. These IRNe are most likely associated with embedded young OB stars at different evolutionary phases, showing a variety of sizes, morphologies, and polarization properties, which can be divided into four categories. We argue the different nebula characteristics to be a possible evolutionary sequence of circumstellar structures around young massive stars.Comment: 4 pages, 1 figur

    Destabilising conventions using temporary interventions

    Get PDF
    Conventions are an important concept in multi-agent systems as they allow increased coordination amongst agents and hence a more efficient system. Encouraging and directing convention emergence has been the focus of much research, particularly through the use of fixed strategy agents. In this paper we apply temporary interventions using fixed strategy agents to destabilise an established convention by (i) replacing it with another convention of our choosing, and (ii) allowing it to destabilise in such a way that no other convention explicitly replaces it. We show that these interventions are effective and investigate the minimum level of intervention needed

    Discovery of the Coldest Imaged Companion of a Sun-Like Star

    Full text link
    We present the discovery of a brown dwarf or possible planet at a projected separation of 1.9" = 29 AU around the star GJ 758, placing it between the separations at which substellar companions are expected to form by core accretion (~5 AU) or direct gravitational collapse (typically >100 AU). The object was detected by direct imaging of its thermal glow with Subaru/HiCIAO. At 10-40 times the mass of Jupiter and a temperature of 550-640 K, GJ 758 B constitutes one of the few known T-type companions, and the coldest ever to be imaged in thermal light around a Sun-like star. Its orbit is likely eccentric and of a size comparable to Pluto's orbit, possibly as a result of gravitational scattering or outward migration. A candidate second companion is detected at 1.2" at one epoch.Comment: 5 pages, 3 figures, 2 tables. Accepted for publication in ApJ Letter

    Young starless cores embedded in the magnetically dominated Pipe Nebula

    Get PDF
    The Pipe Nebula is a massive, nearby dark molecular cloud with a low star-formation efficiency which makes it a good laboratory to study the very early stages of the star formation process. The Pipe Nebula is largely filamentary, and appears to be threaded by a uniform magnetic field at scales of few parsecs, perpendicular to its main axis. The field is only locally perturbed in a few regions, such as the only active cluster forming core B59. The aim of this study is to investigate primordial conditions in low-mass pre-stellar cores and how they relate to the local magnetic field in the cloud. We used the IRAM 30-m telescope to carry out a continuum and molecular survey at 3 and 1 mm of early- and late-time molecules toward four selected starless cores inside the Pipe Nebula. We found that the dust continuum emission maps trace better the densest regions than previous 2MASS extinction maps, while 2MASS extinction maps trace better the diffuse gas. The properties of the cores derived from dust emission show average radii of ~0.09 pc, densities of ~1.3x10^5 cm^-3, and core masses of ~2.5 M_sun. Our results confirm that the Pipe Nebula starless cores studied are in a very early evolutionary stage, and present a very young chemistry with different properties that allow us to propose an evolutionary sequence. All of the cores present early-time molecular emission, with CS detections toward all the sample. Two of them, Cores 40 and 109, present strong late-time molecular emission. There seems to be a correlation between the chemical evolutionary stage of the cores and the local magnetic properties that suggests that the evolution of the cores is ruled by a local competition between the magnetic energy and other mechanisms, such as turbulence.Comment: Accepted for publication in ApJ. 15 pages, 5 figures, 9 table

    AKARI observations of ice absorption bands towards edge-on YSOs

    Full text link
    To investigate the composition and evolution of circumstellar ice around low-mass YSOs, we observed ice absorption bands in the near infrared (NIR) towards eight YSOs ranging from class 0 to class II, among which seven are associated with edge-on disks. We performed slit-less spectroscopic observations using the grism mode of the Infrared Camera (IRC) on board AKARI, which enables us to obtain full NIR spectra from 2.5 μ\mum to 5 μ\mum. The spectra were fitted with polynomial baselines to derive the absorption spectra. The molecular absorption bands were then fitted with the laboratory database of ice absorption bands, considering the instrumental line profile and the spectral resolution of the grism dispersion element. Towards the class 0-I sources (L1527, IRC-L1041-2, and IRAS04302), absorption bands of H2_2O, CO2_2, CO, and XCN are clearly detected. Column density ratios of CO2_2 ice and CO ice relative to H2_2O ice are 21-28% and 13-46%, respectively. If XCN is OCN^-, its column density is as high as 2-6% relative to H2_2O ice. The HDO ice feature at 4.1 μ\mum is tentatively detected towards the class 0-I sources and HV Tau. Non-detections of the CH-stretching mode features around 3.5 μ\mum provide upper limits to the CH3_3OH abundance of 26% (L1527) and 42% (IRAS04302) relative to H2_2O. We tentatively detect OCS ice absorption towards IRC-L1041-2. Towards class 0-I sources, the detected features should mostly originate in the cold envelope, while CO gas and OCN^- could originate in the region close to the protostar, where there are warm temperatures and UV radiation. We detect H2_2O ice band towards ASR41 and 2MASSJ1628137-243139, which are edge-on class II disks. We also detect H2_2O ice and CO2_2 ice towards HV Tau, HK Tau, and UY Aur, and tentatively detect CO gas features towards HK Tau and UY Aur.Comment: Accepted to A&

    Near-infrared Linear Polarization of Ultracool Dwarfs

    Full text link
    We report on near-infrared J- and H-band linear polarimetric photometry of eight ultracool dwarfs (two late-M, five L0-L7.5, and one T2.5) with known evidence for photometric variability due to dust clouds, anomalous red infrared colors, or low-gravity atmospheres. The polarimetric data were acquired with the LIRIS instrument on the William Herschel Telescope. We also provide mid-infrared photometry in the interval 3.4-24 micron for some targets obtained with Spitzer and WISE, which has allowed us to confirm the peculiar red colors of five sources in the sample. We can impose modest upper limits of 0.9% and 1.8% on the linear polarization degree for seven targets with a confidence of 99%. Only one source, 2MAS, J02411151-0326587 (L0), appears to be strongly polarized (P ~ 3%) in the J-band with a significance level of P/sigma_P ~ 10. The likely origin of its linearly polarized light and rather red infrared colors may reside in a surrounding disk with an asymmetric distribution of grains. Given its proximity (66 +/- 8 pc), this object becomes an excellent target for the direct detection of the disk.Comment: Accepted for publication in Ap
    corecore