230 research outputs found

    The Polylogarithm and the Lambert W Functions in Thermoelectrics

    Get PDF
    In this work, we determine the conditions for the extremum of the figure of merit, theta2, in a degenerate semiconductor for thermoelectric (TE) applications. We study the variation of the function theta2 with respect to the reduced chemical potential mu* using relations involving polylogarithms of both integral and nonintegral orders. We present the relevant equations for the thermopower, thermal, and electrical conductivities that result in optimizing theta2 and obtaining the extremum equations. We discuss the different cases that arise for various values of r, which depends on the type of carrier scattering mechanism present in the semiconductor. We also present the important extremum conditions for theta2 obtained by extremizing the TE power factor and the thermal conductivity separately. In this case, simple functional equations, which lead to solutions in terms of the Lambert W function, result. We also present some solutions for the zeros of the polylogarithms. Our analysis allows for the possibility of considering the reduced chemical potential and the index r of the polylogarithm as complex variables

    Direct immobilization of DNA oligomers onto the amine-functionalized glass surface for DNA microarray fabrication through the activation-free reaction of oxanine

    Get PDF
    Oxanine having an O-acylisourea structure was explored to see if its reactivity with amino group is useful in DNA microarray fabrication. By the chemical synthesis, a nucleotide unit of oxanine (Oxa-N) was incorporated into the 5′-end of probe DNA with or without the -(CH2)n- spacers (n = 3 and 12) and found to immobilize the probe DNA covalently onto the NH2-functionalized glass slide by one-pot reaction, producing the high efficiency of the target hybridization. The methylene spacer, particularly the longer one, generated higher efficiency of the target recognition although there was little effect on the amount of the immobilized DNA oligomers. The post-spotting treatment was also carried out under the mild conditions (at 25 or 42°C) and the efficiencies of the immobilization and the target recognition were evaluated similarly, and analogous trends were obtained. It has also been determined under the mild conditions that the humidity and time of the post-spotting treatment, pH of the spotting solution and the synergistic effects with UV-irradiation largely contribute to the desired immobilization and resulting target recognition. Immobilization of DNA oligomer by use of Oxa-N on the NH2-functionalized surface without any activation step would be employed as one of the advanced methods for generating DNA-conjugated solid surface

    A structural model of the active ribosome-bound membrane protein insertase YidC

    Get PDF
    The integration of most membrane proteins into the cytoplasmic membrane of bacteria occurs co-translationally. The universally conserved YidC protein mediates this process either individually as a membrane protein insertase, or in concert with the SecY complex. Here, we present a structural model of YidC based on evolutionary co-variation analysis, lipid-versus-protein-exposure and molecular dynamics simulations. The model suggests a distinctive arrangement of the conserved five transmembrane domains and a helical hairpin between transmembrane segment 2 (TM2) and TM3 on the cytoplasmic membrane surface. The model was used for docking into a cryo-electron microscopy reconstruction of a translating YidC-ribosome complex carrying the YidC substrate F(O)c. This structure reveals how a single copy of YidC interacts with the ribosome at the ribosomal tunnel exit and identifies a site for membrane protein insertion at the YidC protein-lipid interface. Together, these data suggest a mechanism for the co-translational mode of YidC-mediated membrane protein insertion

    Blind testing of cross-linking/mass spectrometry hybrid methods in CASP11

    Get PDF
    Hybrid approaches combine computational methods with experimental data. The information contained in the experimental data can be leveraged to probe the structure of proteins otherwise elusive to computational methods. Compared with computational methods, the structures produced by hybrid methods exhibit some degree of experimental validation. In spite of these advantages, most hybrid methods have not yet been validated in blind tests, hampering their development. Here, we describe the first blind test of a specific cross-link based hybrid method in CASP. This blind test was coordinated by the CASP organizers and utilized a novel, high-density cross-linking/mass-spectrometry (CLMS) approach that is able to collect high-density CLMS data in a matter of days. This experimental protocol was developed in the Rappsilber laboratory. This approach exploits the chemistry of a highly reactive, photoactivatable cross-linker to produce an order of magnitude more cross-links than homobifunctional cross-linkers. The Rappsilber laboratory generated experimental CLMS data based on this protocol, submitted the data to the CASP organizers which then released this data to the CASP11 prediction groups in a separate, CLMS assisted modeling experiment. We did not observe a clear improvement of assisted models, presumably because the properties of the CLMS data-uncertainty in cross-link identification and residue-residue assignment, and uneven distribution over the protein-were largely unknown to the prediction groups and their approaches were not yet tailored to this kind of data. We also suggest modifications to the CLMS-CASP experiment and discuss the importance of rigorous blind testing in the development of hybrid methods. (C) 2016 The Authors Proteins: Structure, Function, and Bioinformatics Published by Wiley Periodicals, Inc

    A Generic Program for Multistate Protein Design

    Get PDF
    Some protein design tasks cannot be modeled by the traditional single state design strategy of finding a sequence that is optimal for a single fixed backbone. Such cases require multistate design, where a single sequence is threaded onto multiple backbones (states) and evaluated for its strengths and weaknesses on each backbone. For example, to design a protein that can switch between two specific conformations, it is necessary to to find a sequence that is compatible with both backbone conformations. We present in this paper a generic implementation of multistate design that is suited for a wide range of protein design tasks and demonstrate in silico its capabilities at two design tasks: one of redesigning an obligate homodimer into an obligate heterodimer such that the new monomers would not homodimerize, and one of redesigning a promiscuous interface to bind to only a single partner and to no longer bind the rest of its partners. Both tasks contained negative design in that multistate design was asked to find sequences that would produce high energies for several of the states being modeled. Success at negative design was assessed by computationally redocking the undesired protein-pair interactions; we found that multistate design's accuracy improved as the diversity of conformations for the undesired protein-pair interactions increased. The paper concludes with a discussion of the pitfalls of negative design, which has proven considerably more challenging than positive design

    Computational Design of a PDZ Domain Peptide Inhibitor that Rescues CFTR Activity

    Get PDF
    The cystic fibrosis transmembrane conductance regulator (CFTR) is an epithelial chloride channel mutated in patients with cystic fibrosis (CF). The most prevalent CFTR mutation, ΔF508, blocks folding in the endoplasmic reticulum. Recent work has shown that some ΔF508-CFTR channel activity can be recovered by pharmaceutical modulators (“potentiators” and “correctors”), but ΔF508-CFTR can still be rapidly degraded via a lysosomal pathway involving the CFTR-associated ligand (CAL), which binds CFTR via a PDZ interaction domain. We present a study that goes from theory, to new structure-based computational design algorithms, to computational predictions, to biochemical testing and ultimately to epithelial-cell validation of novel, effective CAL PDZ inhibitors (called “stabilizers”) that rescue ΔF508-CFTR activity. To design the “stabilizers”, we extended our structural ensemble-based computational protein redesign algorithm to encompass protein-protein and protein-peptide interactions. The computational predictions achieved high accuracy: all of the top-predicted peptide inhibitors bound well to CAL. Furthermore, when compared to state-of-the-art CAL inhibitors, our design methodology achieved higher affinity and increased binding efficiency. The designed inhibitor with the highest affinity for CAL (kCAL01) binds six-fold more tightly than the previous best hexamer (iCAL35), and 170-fold more tightly than the CFTR C-terminus. We show that kCAL01 has physiological activity and can rescue chloride efflux in CF patient-derived airway epithelial cells. Since stabilizers address a different cellular CF defect from potentiators and correctors, our inhibitors provide an additional therapeutic pathway that can be used in conjunction with current methods

    Serum Albumin Domain Structures in Human Blood Serum by Mass Spectrometry and Computational Biology

    Get PDF
    Chemical cross-linking combined with mass spectrometry has proven useful for studying protein-protein interactions and protein structure, however the low density of cross-link data has so far precluded its use in determining structures de novo. Cross-linking density has been typically limited by the chemical selectivity of the standard cross-linking reagents that are commonly used for protein cross-linking. We have implemented the use of a heterobifunctional cross-linking reagent, sulfosuccinimidyl 4,4′-azipentanoate (sulfo-SDA), combining a traditional sulfo-N-hydroxysuccinimide (sulfo-NHS) ester and a UV photoactivatable diazirine group. This diazirine yields a highly reactive and promiscuous carbene species, the net result being a greatly increased number of cross-links compared with homobifunctional, NHS-based cross-linkers. We present a novel methodology that combines the use of this high density photo-cross-linking data with conformational space search to investigate the structure of human serum albumin domains, from purified samples, and in its native environment, human blood serum. Our approach is able to determine human serum albumin domain structures with good accuracy: root-mean-square deviation to crystal structure are 2.8/5.6/2.9 Å (purified samples) and 4.5/5.9/4.8Å (serum samples) for domains A/B/C for the first selected structure; 2.5/4.9/2.9 Å (purified samples) and 3.5/5.2/3.8 Å (serum samples) for the best out of top five selected structures. Our proof-of-concept study on human serum albumin demonstrates initial potential of our approach for determining the structures of more proteins in the complex biological contexts in which they function and which they may require for correct folding. Data are available via ProteomeXchange with identifier PXD001692

    Enhancing coevolution-based contact prediction by imposing structural self-consistency of the contacts

    Get PDF
    Based on the development of new algorithms and growth of sequence databases, it has recently become possible to build robust higher-order sequence models based on sets of aligned protein sequences. Such models have proven useful in de novo structure prediction, where the sequence models are used to find pairs of residues that co-vary during evolution, and hence are likely to be in spatial proximity in the native protein. The accuracy of these algorithms, however, drop dramatically when the number of sequences in the alignment is small. We have developed a method that we termed CE-YAPP (CoEvolution-YAPP), that is based on YAPP (Yet Another Peak Processor), which has been shown to solve a similar problem in NMR spectroscopy. By simultaneously performing structure prediction and contact assignment, CE-YAPP uses structural self-consistency as a filter to remove false positive contacts. Furthermore, CE-YAPP solves another problem, namely how many contacts to choose from the ordered list of covarying amino acid pairs. We show that CE-YAPP consistently improves contact prediction from multiple sequence alignments, in particular for proteins that are difficult targets. We further show that the structures determined from CE- YAPP are also in better agreement with those determined using traditional methods in structural biology
    corecore