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Abstract 

In this work, we determine the conditions for the extremum of the figure of merit 2θ , in a 

degenerate semiconductor for thermoelectric (TE) applications. We study the variation of the 

function 2θ with respect to the reduced chemical potential *µ  using relations involving 

polylogarithms of both integral and non-integral orders. We present the relevant equations for the 

thermopower, thermal, and electrical conductivities that result in optimizing 2 and obtaining the 

extremum equations. We discuss the different cases that arise for various values of r, which 

depends on the type of carrier scattering mechanism present in the semiconductor. We also 

present the important extremum conditions for 2 obtained by extremizing the TE power factor 

and the thermal conductivity separately. In this case, simple functional equations, which lead to 

solutions in terms of the Lambert W function, result. We also present some solutions for the 

zeros of the polylogarithms. Our analysis allows for the possibility of considering the reduced 

chemical potential and the index r  of the polylogarithm as complex variables.  

 

Key words:Polylogarithms, Lambert W function, Thermoelectrics, Chemical Potential, Figure of 

Merit 





1. INTRODUCTION 

 

There is considerable current interest in quasizero-dimension physics that refers to the study of 

electrons and excitons in nanostructures. A polylogarithmic formulation of the statistical 

mechanics of ideal particles in null dimension could provide some useful insight and limits into 

and limits on the behavior of quantum dots. In recent years new methods [1-4] have been 

developed for the study of D-dimensional Bose and Fermi gases that have led to fruitful 

applications of the theory of Polylogarithms  (hereinafter referred to as polylogs), also known as 

Jonquière’s function [5] and closely related to the Lerch transcendent [6,7]. 

 

Polylogs are transcendental functions of two complex numbers. They are a modern 

generalization of Euler’s dilogs and Landen’s trilogs [8]. Polylogs have been studied by some of 

the greatest mathematicians of the past including Euler, Lambert, Legendre, Wirtinger, Abel, 

Appell, Lindelöf, Lobachevsky, Kummer, and Ramanujan among others.  The dilogarithm 

function [9], also referred to as the Spence function, has also been connected with some of these 

great names in the history of mathematics and has successfully been used in quantum field 

theory by ‘t Hooft and Veltman [10] in connection with the Feynman diagram integrals for 

quantum processes, graviton calculations, algebraic geometry [11-13], and other applications. 

Polylogs have seen applications in fields such as combinatorics, knot theory, quantum statistics 

and high energy physics. These special functions are particularly useful in the study of the 

thermodynamics of Bose and Fermi statistics. Lee discussed the direct relationship between 

Fermi-Dirac (FD) integrals and polylogs in his pioneering work on the unification of Bose and 

Fermi statistics [14-16]. Different statistical effects refer to different structural properties of 

polylogs. One can view different statistics as representing different domains of polylogs.  

 

Thermoelectric (TE) materials are those that are able to efficiently generate power using the 

Seebeck effect or refrigerate using the Peltier effect. TE materials are capable of acting as solid 

state refrigerators or heat pumps that do not use any moving parts or environmentally harmful 

fluids. Because of their high reliability and simplicity, TE materials are used extensively in fields 

such as space power generation, waste heat recovery, and a variety of cooling applications [17]. 

The potential of a material for TE applications is determined by a measure of the dimensionless 





parameter 2θ called the figure of merit. This parameter depends on the thermopower or Seebeck 

coefficientη , the electrical conductivityσ , the average temperature T of the thermocouple, and 

the total thermal conductivityλ . The figure of merit plays a major role in the TE materials 

research, as the efficiency or the coefficient of performance of a TE couple is proportional to the 

figure of merit. To be competitive compared with   conventional refrigerators and generators, one 

must have materials with figure of merit greater than three.  

 

It is of theoretical, mathematical and experimental interest to determine the maximum figure of 

merit that can be achieved in TE materials.  

 

This work focuses on the applications of the polylog and the Lambert W functions in 

thermoelectrics. In this work we determine the conditions for the extremum of the figure of merit 

in a degenerate semiconductor for TE applications. We study the variation of the function 2θ

with respect to the reduced chemical potential using polylogs of both integral and non-integral 

order. In the special cases where the extrema of thermal conductivity and TE power factor are 

separately considered, simple functional equations that lead to solutions in terms of the Lambert 

W functions [18-21] result. The advantage of using polylogs and the Lambert W function is that 

they are built into standard computer mathematical packages such as Mathematica, Matlab, and 

Maple, eliminating the need for approximations or tabulations for Fermi-Dirac integrals. In 

section 2, we present the relevant equations for the thermopower, thermal, and electrical 

conductivity, that result in an optimized figure of merit 2 and obtain the extremum equations for 

2. In section 3, we discuss the different cases that arise for various values of r. In section 4, we 

also present the important extremum conditions for 2 obtained by extremizing the TE power 

factor and the thermal conductivity separately as well as solutions for the zeros of the polylogs. 

The final section presents conclusions.  

 

2. The Extremum Conditions for 2  

 

For a material to be a good TE material, it must have a high electrical conductivity, large 

Seebeck coefficient, and low thermal conductivity. Insulators are poor TE materials owing to 

their low electrical conductivity. Despite having high electrical conductivity, metals are not 





favorable for TE applications because of their extremely low Seebeck coefficient values [22]. On 

the other hand, Seebeck coefficient values of semiconductors are much higher than those of 

metals [23]. Several semiconductors have a high melting point which permits their operation at 

high temperatures. The power factor, ση 2 , can be optimized in semiconductors through doping 

to give the largest figure of merit[24]. The ratio of the thermal to the electrical conductivity, σλ /  

, could be decreased if the semiconductor TE material is alloyed with an isomorphous element or 

compound[25]. These factors make semiconductors a good choice for TE applications.

 

We consider a thermocouple whose branches are made up of n-and p-type semiconductors of the 

same material and of the same electrical conductivity. The relevant equations for 2θ and its 

extremum are presented later in detail. Some of them are taken from the literature [22]. The 

figure of merit is given by  

    
λ

ση
θ

T2
2 =                                                         (1) 

The thermal conductivity, λ , contains two components: the electronic component, eλ , and a 

lattice component, 0λ : 

                                                        0λλλ += e                                                            (2) 

ση 2 is called the TE power factor. 

The coefficient of performance (refrigeration mode) [22] and the efficiency (power generation 

mode) [24] of the TE couple are proportional to the figure of merit. 

The expressions forη , σ and eλ for an extrinsic semiconductor are given by [22, 24] 

                                            
( )
( ) 








−

+

+
= + *1

1
2

µη
r

r

Fr

Fr

e

k
                                                 (3) 

                                            
( ) ( )

3

1
0

2

3
116

h

FrkTlme r

r
+

=
+π

σ                                          (4) 

                                            ( ) ( )
( ) 








+

+
−+= +

+

++

r

r
r

rr

e
Fr

Fr
Fr

h

Tkml

1
2

3
3

16 2
1

2

23

23
0π

λ            (5) 

where k is the Boltzmann constant, e is the electronic charge,  *µ is the reduced chemical 

potential equal to the Fermi level divided by kT , m is the effective mass of the carriers, 0l  is a 





proportionality constant in the expression for the carrier mean free path ( rEll 0= ), E is the 

carrier energy, and h is the Planck’s constant. 

The functions iF ( 2,1, ++= rrri ) are Fermi integrals of the form 

( ) 
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− +
=
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1
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µ
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i

i
e

dxx
F . 

Physicists first became aware of the FD integrals through the work of Sommerfeld [26]. 

McDougall and Stoner, in addition to tabulating them, explored a number of analytic aspects of 

such functions [27]. 

 

The quantity r takes on different values depending on the carrier scattering mechanism: 

for lattice scattering in a non-polar material and a polar material, 0=r and 1/2, respectively; 

for ionized impurity scattering 2=r  [22]. 

 

When the chemical potential becomes complex, the FD integral can be generalized to make the 

index r  of the polylog functions a complex variable.  Such a generalization would lead to a 

richer structure of solutions for the zeros of the polylog functions. The zeros will have a possible 

close connection to the zeros of the Riemann  function [28]. 

We derive conditions that give the extremum of the figure of merit with respect to the reduced 

chemical potential. 

At a given operating temperatureT , in order to obtain the extremum of 2θ , we equate the 

derivative of 







λ
ση 2

 with respect to *µ with zero; that is, 
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which leads to the following cases: 
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Because 0λ  is independent of *µ  in (8), we have 
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*0** µ

λ
λλ

µµ
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To evaluate the various derivatives, we rewrite the expressions forσ , η and eλ in terms of 

polylogs, as the Fermi integrals are a subset of the polylogs [14, 29]: 

                                                 ( ) ( ) ( )*
1

* exp1 µµ −+Γ−= +rr LirF                     (9) 

 

From (3), (4), (5) and (9) we obtain the following expressions: 
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In obtaining the preceding equations, we used the recurrence formula for the gamma function 

( ) ( )1+Γ=Γ rrr . 

For the sake of brevity, hereinafter we write mostly rLi for ( )*expµ−rLi . 

From (10), (11) and (12), we obtain the following derivatives: 
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In obtaining the preceding derivatives, we used the recurrence relation for polylogs [30]: 

( ) ( )zLizLi
dz

d
z ss =+1 . 

Substituting equations (10) -(15) into (8), we get the following condition for the extremum of 2θ : 
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where  

( )( )32
0 3/16 hkTkmlD

r +
= π . 

Equation (16) gives the extremum equation for the general case of r. Now we shall obtain the 

simplified extremum equations for specific values of r (0, ½ and 2). 

 

3. Three Different Cases for r 

 

Case 1 

0=r  

Substituting 0=r into equation (16) and simplifying we get the following: 

( )( ) ( ){ } 0242226 2120
*2

1
*

210
*

20
2

130
3

1 =+−+−−− LiLiLiLiLiDLiLiLiLiLiLiDLiLi µµµλ   (17) 

 

                                                                 01 = Li                                                            (18) 

or  

( )( ) ( ){ } 0242226 2120
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1
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2

130 =+−+−−− LiLiLiLiLiDLiLiLiLiLiLiDLi µµµλ (19) 

This gives various possibilities as discussed in the following list. 

(i) If  

                                                                     ( ) 06 30 =− DLiλ ,                                               (20) 

then, 

 ( ) 0242 2120
*2

1
*

2 =+− LiLiLiLiLiDLi µµ (21) 

                                                                        02 = Li                                                  (22) 

or 

 ( ) 024 2120
*2

1
* =+− LiLiLiLiLi µµ ( 0≠D )                          (23)

In this case, which started from the analysis of (19), the following are the conditions for the 

extremum of 2θ in addition to (18): 





                                                                     02 =Li                                                         (24) 

                                                                    
D

Li
6

0
3

λ
=                                                     (25) 

 ( ) 024 2120
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1
* =+− LiLiLiLiLi µµ (26)

(ii) From (19), if we consider one of the other possibilities 

 ( ) 022 10
*

20
2

1 =−− LiLiLiLiLi µ (27) 

then (21) holds, and (22) or (23).

In this case, which started from the analysis of (19), the following are the conditions for the 

extremum of 2θ in addition to (18) – (24), (26), and (27). 

(iii)   From (19), if we consider the third possibility, (24), then 

                                                           

 ( )( ) 0226 10
*
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2

130 =−−− LiLiLiLiLiDLi µλ (28)

which leads to (25) or (27). 

In this case of (iii) which started from an analysis of (19), the following are the conditions for 

the extremum of 2θ in addition to (18): (24), (25), and (27): 

(iv) From (19) , if one considers the fourth possibility, (26), one finds that (28) leads to (25) 

or (27).   

In this case, which started from the analysis of (19), the following are the conditions for the 

extremum of 2θ in addition to (18): (25), (26), and (27). 



Case 2 

2/1=r   

Substituting 2/1=r into equation (16) and simplifying, one gets the following: 
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This gives various possibilities as discussed later. 

(v) If   
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the following are the conditions for the extremum of 2θ  apart from (30): 
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(vi)  If   
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the following conditions result for the extremum of 2θ apart from (30): (33), (35), and (36). 

 

(vii) If (33) is true, 

                                             

the following conditions result for the extremum of 2θ apart from (30): (33), (34), and (36)

 

(viii) If  (35) is true, the following conditions result for the extremum of 2θ apart from (30): 

(34), (35), and (36). 

Case 3 

We will consider 2=r next. 

Substituting 2=r into (16) and simplifying we get the following: 
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                                                         03 = Li                                                             (38) 

or 
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This gives various possibilities as discussed in the following list. 

(ix)  If  

 ( ) 0120 50 =− DLiλ (40) 

the following are the conditions for the extremum of 2θ in addition to (38): 

                                               04 =Li                                                                  (41) 
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(x) If  

 ( ) 046 32
*

42
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3 =−− LiLiLiLiLi µ (44) 

the following conditions result for the extremum of 2θ in addition to (39): (41), (43), and (44). 



(xi)      If (41) is true, then the following conditions result for the extremum of 2θ in addition 

to (38): (41), (42), and (44). 

 

(xii) If (43) is true, thenhe following conditions result for the extremum of 2θ in addition 

to (39): (42), (43), and (44). 

 

In the following section, we consider special and also equally important cases where the TE 

power factor and the thermal conductivity are extremized separately. This can also be of great 

importance for experimentalists, who may be confronted with the problem of deciding which of 

these would be easier to study or implement [31]. 

 

4. Extremization of the TE power factor and thermal conductivity separately 

 

The extremization of the TE power factor ( )ση 2  leads to the following equations: 
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which, on simplification, gives the following equation: 

                  ( )[ ]{ }
( )

0
2

22

1
2

1
*

12

2
12

2
1 =+

−+

−−+

++++

+++

r

r

rrr

rrrr

Li

Li

LiLiLir

LiLiLiLir

µ
                          (47) 

Further algebraic manipulation leads to the following result 
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The extremization of the thermal conductivity ( )λ  leads to the following equations: 
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where 0≠D when 0≠T .  

This can be simplified to  

( ) ( )[ ] ( ) ( ) 032324 2
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1 =+Γ+−+Γ−+Γ +++ rrrr LiLirrLiLirr               (50) 

These equations are simplified for the three separate cases of r (r=0, 1/2 and 2) that follow. 

 

Case 1 

0=r  

 Equation (48) reduces to the following equations 

                                           01 =Li                                                       (51) 

and 

                               022 10
*

20
2

1 =−− LiLiLiLiLi µ                               (52) 

Equation (50) reduces to the following equations: 

                                          02 =Li                                                      (53) 

and  

                                02 20
2

1 =− LiLiLi                                                (54) 

It is observed that equations (51), (52) and (53), (54) hold simultaneously on extremizing 2θ . 

Now (52) can be simplified further with the aid of (54) to give the following equations: 

                                      01 =Li                                                          (55) 

and  
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To summarize, the conditions for the case 0=r are  

                                     ( ) 0exp *
1 =− µLi                                        (57) 

                                     ( ) 0exp *
2 =− µLi                                        (58) 
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Case 2 

2/1=r  

In a similar approach that was followed for 0=r , one obtains the following equations: 
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 Case 3 

2=r  

The conditions given later for this case are obtained in a similar way as in the previous cases.  

         ( ) 0exp *
3 =− µLi                                                           (63) 
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We find interesting solutions for the different cases that follow. 

Case 1 

*expµ−=z , 1<<z , 1* <<µ  and 0* <µ   

It is interesting to observe that one gets the following solutions for ( ) 0=zLis where s can take 

any one of three numbers (0, ½ and 2) or a more general value 
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where ( )jW is the multi-valued Lambert W function for branch j. 

It is of interest to observe that we used a trinomial equation in z and an approach similar to 

Euler’s in solving such an equation [32, 33]. 

For 2/3=s , the values of jW (j =0, -1 and 1) and *µ are shown in Table 1. 

Fornberg and Kölbig [28] did a detailed investigation of the complex zeros of the polylog 

function, for real values of z and complex r , and found that there may be trajectories of the 

zeros that tend towards the zeros of the Riemann  function as 1−→z .  

Case 2 

*expµ−=z , 1<<z , 1* >µ  and 0* <µ   

In this case, we get (69), given below, as a solution for ( ) 0=zLis . 

The series expansion for ( )zLis  is given below for 1<z  

                                          ( ) 
∞

=

=
1k

s

k

s
k

z
zLi                                               (68) 

They are defined in the complex plane over the open unit disk and can be uniquely extended over 

the whole complex plane by analytic continuation.  

For sufficiently small z , 1* >µ and 0* <µ , we considered the first three terms in the preceding 

series to approximately solve for the zeros of the polylogs. The analysis can be generalized to 

include a large number of terms in the series, say Nk = )1( >>N , and retain only the first two 

terms of the exponential for each power of z . 
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Case 3 

*expµ−=z , 1>z , and 0* >µ  

For integer )1(>r , we have the following identity 
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Here ( )xBr  is a Bernoulli polynomial given by  
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and B0=1, B1= -1/2, B2=1/6, B3=0, B4= -1/30 … 

If ( ) 0=zLir , implifies as  
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For example, 2=r gives the following solution for 1* <<µ : 
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where  
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Equation (73) further simplifies to the following: 
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where 
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Case 4 

*expµ−=z , 1* >>µ , and 1>>z  

For non-integral order (r), we have the following inversion relation valid for ( ) 1log >>− z : 
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where ( )z−= logα , and ( )12 22 −−= nn LiA . 

It is worth mentioning that the case of non-integral order is also of long-standing interest. In fact, 

for 2/1−=r , 2/1 and 2/3 , Truesdell [28, 34] has investigated the zeros of the polylogs in the 

theory of the structure of polymers in detail.  

For example, 2/1=r  gives the following solution : 
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Another interesting way of maximizing figure of merit is when the electronic contribution to 

thermal conductivity, eλ , equals zero. Under this situation equation (12) leads to the following 

condition: 

                                  ( ) ( ) 032 31
2

2 =+−+ +++ rrr LiLirLir                          (78) 

5. Concluding remarks 

 

We have derived the conditions for the extremum of the figure of merit 2θ in a degenerate 

semiconductor for TE applications. In deriving these conditions, we used the expressions for the 

FD integrals in terms of polylogs. The extremum conditions obtained involve zeros of the 

polylogs as well as functional equations in polylogs. For the case where the TE power factor and 

the thermal conductivity are extremized separately, a subset of conditions involved in the general 

case result. For most of these conditions, it is feasible to derive solutions for the reduced 

chemical potential, *µ , in terms of the multi-branched Lambert W function, jW . The reduced 

chemical potential *µ is an important thermodynamic variable that describes both classical and 

quantum mechanical states of a system [35]. Our analysis is applicable to the case where *µ , the 

argument z , and the index r of the polylog can be complex [36]. 

 





An important problem that arises in our work is the zeros of the polylogs of non-integral order. 

This will be of great potential interest in the current technological drive towards developing more 

efficient TE materials. The solutions obtained for *µ provide values for the Fermi energy level 

that extremize the figure of merit. These will be a good guide for experimental investigation. The 

challenge of developing more efficient TE materials will warrant a thorough study of quantum 

and fractional statistics to complement experimental investigations. These applications strongly 

indicate the immense potential and utility of polylogs and the Lambert W functions not only in 

quantum statistics but to other diverse practical problems [37].  

Mathematicians have made an intensive analytical and numerical study of polylogs. Vepštas [38] 

has extended the techniques given by Borwein for computing the Riemann  function and 

provided an algorithm for evaluation of the polylogs for complex r in a limited domain for z . By 

using the duplication and inversion formulae, his algorithm allows for the evaluation of the 

polylogs for all complex r  and z . We plan to do a detailed numerical analysis of the zeros of 

polylogs that arise in our study of thermoelectrics with the aid of the preceding recent 

mathematical research done in this area.  We also plan to test these results experimentally in 

nanostructured bismuth telluride as well as alkali metal doped bismuth telluride for low 

temperature  cooling applications and in nanostructured vanadium pentoxide as well as alkali 

metal doped vanadium pentoxide for high temperature power generation applications. 

 

The presence of logarithmic, FD or Bose-Einstein integrals, the Riemann  functions is a strong 

attractor to welcome polylogs for the analysis of problems. The FD as well as Bose-Einstein 

integrals of both integral and non-integral order that can be cast into polylogs facilitate fast and 

precise calculations using mathematical packages or numerical methods.  In light of the 

remarkable applications of the classical polylog and the polypseudologarithms [39] in physical 

problems, it will not be unexpected for the more general multiple polylog to occur in a variety of 

physical contexts [40]. 
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