34 research outputs found
Recommended from our members
Farmers’ ethno-ecological knowledge of vegetable pests and pesticidal plant use in Malawi and Zambia
While pests are a major constraint in vegetable production in many parts of Southern Africa, little is known about farmers’ knowledge and management practices. A survey was conducted among 168 and 91 vegetable farmers in Northern Malawi and Eastern Zambia, respectively, to evaluate their knowledge, attitudes and traditional management practices in tomato and crucifers (brassica). All respondents in Malawi and Zambia reported pest damage on tomato and crucifers, and 75% had used synthetic pesticides. The use of pesticidal plants, cultural practices and resistant varieties constituted a smaller portion of the pest control options in both crucifers and tomato. Over 70% of the respondents were aware of pesticidal plants, and more female (75%) than male (55%) respondents reported using them. While over 20 different plant species were mentioned by respondents, Tephrosia vogelii accounted for 61 and 53% of the pesticidal species known to respondents in Malawi and Zambia, respectively. Farmers with small landholdings were more inclined to use pesticidal plants than those with medium and large landholding highlighting the importance of this management alternative for poor farmers. Most respondents were willing to cultivate pesticidal plants, which indicate that farmers understand the potential value of these plants in pest management
Designing local solutions for emptying pit latrines in low-income urban settlements (Malawi)
A lack of effective options in local technology poses challenges when onsite household sanitation facilities are eventually filled to capacity in unplanned settlement areas within Mzuzu City, located in northern Malawi. Vacuum trucks currently dominate the market but focus on emptying septic tanks in the more easily accessible planned settlement areas, rather than servicing the pit latrines common in unplanned settlement areas. As a result, households in the unplanned settlement areas within Mzuzu rely primarily on manual pit emptying (i.e., shoveling by hand) or digging a new pit latrine. These practices have associated health risks and are limited by space constraints. This research focused on filling the technological gap through the design, development, and testing of a pedal powered modified Gulper pump using locally available materials and fabrication. A modified pedal powered Gulper technology was developed and demonstrated to be capable of lifting fecal sludge from a depth of 1.5 m with a mean flow rate of 0.00058 m3/s. If the trash content was low, a typical pit latrine with a volume of 1–4 m3 could be emptied within 1–2 h. Based on the findings in our research Phase IV, the pedal powered Gulper modification is promising as a potential emptying technology for lined pit latrines in unplanned settlement areas. The success rate of the technology is about 17% (5 out 30 sampled lined pit latrines were successful) and reflects the difficulty in finding a single technology that can work well in all types of pit latrines with varying contents. We note that cost should not be the only design criteria and acknowledge the challenge of handling trash in pit latrines
Novel agmatine derivatives in Maerua edulis with bioactivity against Callosobruchus maculatus, a cosmopolitan storage insect pest
Food security in developing countries is threatened by crop pests and ectoparasites in livestock. Strategies for their management still rely on synthetic pesticides which are not always effective and the active ingredients persist in the environment with negative consequences for beneficial arthropods, farmers and consumers, hence necessitating research on sustainable alternatives. Botanical insecticides are increasingly relevant, typically having lower impacts on users, consumers and the environment. One example is the southern African shrub the Blue bush-berry, Maerua edulis. Recent work reported effective pest control using this plant species against cattle ticks, storage beetles and vegetable pests. However, little is known about the chemistry underlying activity and this is essential to optimize its use. Here, we identified two novel plant chemical tructures, the E and Z isomers of cinnamoyl-4-aminobutylguanidine along with the E and Z isomers of 4-hydroxycinnamoyl-4-aminobutylguanidine in the leaves of M. edulis. We isolated these compounds from the leaves and elucidated their chemical structures
using various spectroscopic techniques including High Resolution Mass Spectrometry and Nuclear Magnetic Resonance Spectroscopy. We also identified a further 11 closely related structures of which 6 are tentatively reported here for the first time. Stachydrine and 3-hydroxystachydrine were also identified in the leaf extract, and occurred at very high concentrations; up to 2% w/w of dry leaves. We tested these two compounds, along with the 4 main cinnamoylamides and the crude M. edulis leaf extract against the cowpea bruchid Callosobruchus maculatus at concentrations equivalent to those present in extracts used by smallholder farmers. Mortality of insects exposed to crude plant extracts after 72 h was significantly higher than the untreated control although still lower than for insects exposed to rotenone, the positive control. The two new compounds and stachydrine showed similar activity to the crude extracts suggesting that these compounds explained the activity of the extract. After 6 days, the mortality of insects exposed to crude extracts and isolated compounds was similar to that recorded with the positive control. The stachydrine fraction and the E and Z isomers of cinnamoyl-4-aminobutylguanidine also inhibited oviposition activity in fecund female beetles. Our data show that methanol extracts of M. edulis were toxic to C. maculatus and inhibited oviposition even at 0.1% w/v so these foliar chemicals may explain the activity of the plant material. We also synthesized the amides which facilitated structural elucidation, produced adequate quantities for testing and demonstrated the potential for commercial
synthesis
Odour-mediated orientation of beetles is influenced by age, sex and morph
The behaviour of insects is dictated by a combination of factors and may vary considerably between individuals, but small insects are often considered en masse and thus these differences can be overlooked. For example, the cowpea bruchid Callosobruchus maculatus F. exists naturally in two adult forms: the active (flight) form for dispersal, and the inactive (flightless), more fecund but shorter-lived form. Given that these morphs show dissimilar biology, it is possible that they differ in odour-mediated orientation and yet studies of this species frequently neglect to distinguish morph type, or are carried out only on the inactive morph. Along with sex and age of individual, adult morph could be an important variable determining the biology of this and similar species, informing studies on evolution, ecology and pest management. We used an olfactometer with motion-tracking to investigate whether the olfactory behaviour and orientation of C. maculatus towards infested and uninfested cowpeas and a plant-derived repellent compound, methyl salicylate, differed between morphs or sexes. We found significant differences between the behaviour of male and female beetles and beetles of different ages, as well as interactive effects of sex, morph and age, in response to both host and repellent odours. This study demonstrates that behavioural experiments on insects should control for sex and age, while also considering differences between adult morphs where present in insect species. This finding has broad implications for fundamental entomological research, particularly when exploring the relationships between physiology, behaviour and evolutionary biology, and the application of crop protection strategies
Chemical variation and insecticidal activity of Lippia javanica (Burm. F.) Spreng essential oil against Sitophilus zeamais Motschulsky
Lippia javanica (Burm. f.) Spreng is used commercially as an herbal tea and medicinal plant in sub-Saharan Africa. Here we investigated the chemical variation and pesticidal potential of L. javanica essential oils against a major stored product pest, Sitophilus zeamais Motschulsky. We identified two morphologically distinct varieties of L. javanica growing at different locations in Malawi. Perillaldehyde was the major constituent in oil of L. javanica var. javanica while myrcenone (ipsdienone) was the major compound in oils of L. javanica var. whytei. Myrcene, linalool, carvone, β-caryophyllene and germacrene D were identified as the other most significant components in oils from both varieties. The yields of oil and the chemical composition also varied significantly with time of harvest during the season in both cases. In contact toxicity tests against S. zeamais, oils from both varieties were active. However, whereas perillaldehyde, linalool and carvone, components of the oil of L. javanica var. javanica, were all toxic against adult S. zeamais, myrcenone, the main component of oil from L. javanica var. whytei, was not. The oil from L. javanica var. javanica also showed some fumigant toxicity against S. zeamais. The high efficacy of L. javanica oil against S. zeamais suggests it is suitable to be used as a botanical insecticide to control S. zeamais in stored maize. However, further research is required to optimise and standardise the variety and harvest time to be recommended and to evaluate its activity against S. zeamais and other storage insect pests under farm conditions before it can be adopted by farmers more widely
Shades of yellow: interactive effects of visual and odour cues in a pest beetle
Background: The visual ecology of pest insects is poorly studied compared to the role of odour cues in determining their behaviour. Furthermore, the combined effects of both odour and vision on insect orientation are frequently ignored, but could impact behavioural responses.
Methods: A locomotion compensator was used to evaluate use of different visual stimuli by a major coleopteran pest of stored grains (Sitophilus zeamais), with and without the presence of host odours (known to be attractive to this species) in an open-loop setup.
Results: Some visual stimuli – in particular, one shade of yellow, solid black and high contrast black-against-white stimuli – elicited positive orientation behaviour from the beetles in the absence of odour stimuli. When host odours were also present, at 90° to the source of the visual stimulus, the beetles presented with yellow and vertical black-against-white grating patterns changed their walking course and typically adopted a path intermediate between the two stimuli. The beetles presented with a solid black-on-white target continued to orient more strongly towards the visual than the odour stimulus.
Discussion: Visual stimuli can strongly influence orientation behaviour, even in species where use of visual cues is sometimes assumed to be unimportant, while the outcomes from exposure to multimodal stimuli are unpredictable and need to be determined under differing conditions. The importance of the two modalities of stimulus (visual and olfactory) in food location is likely to depend upon relative stimulus intensity and motivational state of the insect
Pesticidal plant extracts improve yield and reduce insect pests on legume crops without harming beneficial arthropods
In the fight against arthropod crop pests using plant secondary metabolites, most research has focussed on the identification of bioactive molecules. Several hundred candidate plant species and compounds are now known to have pesticidal properties against a range of arthropod pest species. Despite this growing body of research, few natural products are commercialised for pest management whilst on-farm use of existing botanically-based pesticides remains a small, but growing, component of crop protection practice. Uptake of natural pesticides is at least partly constrained by limited data on the trade-offs of their use on farm. The research presented here assessed the potential trade-offs of using pesticidal plant extracts on legume crop yields and the regulating ecosystem services of natural pests enemies. The application of six established pesticidal plants (Bidens pilosa, Lantana camara, Lippia javanica, Tephrosia vogelii, Tithonia diversifolia and Vernonia amygdalina) were compared to positive and negative controls for their impact on yields of bean (Phaseolus vulgaris), cowpea (Vigna unguiculata) and pigeon pea (Cajanus cajan) crops and the abundance of key indicator pest and predatory arthropod species. Analysis of field trials showed that pesticidal plant treatments often resulted in crop yields that were comparable to the use of a synthetic pesticide (lambda-cyhalothrin). The best-performing plant species were Tephrosia vogelii, Tithonia diversifolia and Lippia javanica. The abundance of pests was very low when using the synthetic pesticide, whilst the plant extracts generally had a higher number of pests than the synthetic but lower numbers than observed on the negative controls. Beneficial arthropod numbers were low with synthetic treated crops, whereas the pesticidal plant treatments appeared to have little effect on beneficials when compared to the negative controls. The outcomes of this research suggest that using extracts of pesticidal plants to control pests can be as effective as synthetic insecticides in terms of crop yields while tritrophic effects were reduced, conserving the non-target arthropods that provide important ecosystem services such as pollination and pest regulation. Thus managing crop pests using plant secondary metabolites can be more easily integrated in to agro-ecologically sustainable crop production systems
Multiple ecosystem services from field margin vegetation for ecological sustainability in agriculture: scientific evidence and knowledge gaps
Background: Field margin and non-crop vegetation in agricultural systems are potential ecosystem services providers because they offer semi-natural habitats for both below and above ground animal groups such as soil organisms, small mammals, birds and arthropods that are service supplying units. They are considered as a target area for enhancing farm biodiversity.
Methodology: To explore the multiple potential benefits of these semi-natural habitats and to identify research trends and knowledge gaps globally, a review was carried out following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. A total of 235 publications from the year 2000 to 2016 in the Scopus and Web of Science databases were reviewed.
Results: The literature showed an increasing trend in the number of published articles over time with European studies leading in the proportion of studies conducted, followed by North America, Asia, South America, Africa and Australia. Several functional groups of organisms were studied from field margin and non-crop vegetation around agricultural lands including natural enemies (37%), insect pests (22%), birds (17%), pollinators (16%), soil macro fauna (4%) and small mammals (4%). Ecosystem services derived from the field margin included natural pest regulation, pollination, nutrient cycling and reduced offsite erosion. Some field margin plants were reported to host detrimental crop pests, a major ecosystem dis-service, potentially leading to increased pest infestation in the field.
Conclusion: The majority of studies revealed the importance of field margin and non-crop vegetation around arable fields in enhancing ecosystem biodiversity. Promotion of field margin plants that selectively enhance the population of beneficial organisms would support sustainable food security rather than simply boosting plant diversity. Our analyses also highlight that agro-ecological studies remain largely overlooked in some regions
Yield and Physicochemical Properties of Marula (Sclerocarya birrea) Seed Oils among Nine International Provenances Tested in Malawi
Sclerocarya birrea (Marula) is an indigenous fruit tree that is revered for its numerous socioeconomic contributions to human livelihood. Among others, the species is an important source of seed oil that is utilized in various domestic and industrial applications. This study was carried out to assess the yield and physicochemical properties of seed oils among nine international provenances of Sclerocarya birrea (subspecies caffra and birrea) planted in Malawi. Seed oils were obtained using the Soxhlet extraction method while quality parameters were determined using procedures described by the Malawi Bureau of Standards. Oil yield was highest (52.2%) in subspecies birrea (Missira provenance; Mali). Oil moisture content, free fatty acids, acid value, and peroxide value ranged from 0.06 to 076%, 1.96 to 4.07%, 3.91 to 8.13 mg·KOH/g, and 1.84 to 5.15 meq·KOH/g, respectively. Variations in oil yield and physicochemical properties could be attributed to genetic differences and the origin of genotypes. The selection of Sclerocarya birrea for oil production and use should be based on both provenance and subspecies levels. Further studies should study the heritability of the oil content and its physicochemical properties before conclusive decisions on the use of seed for propagation are carried out
Nutritional and Phytochemical Variation of Marula (Sclerocarya birrea) (Subspecies caffra and birrea) Fruit among Nine International Provenances Tested in Malawi
Sclerocarya birrea (Marula) is one of the indigenous fruit trees that was selected for domestication in Malawi. This study was conducted to assess nutritional and phytochemical variation of Sclerocarya birrea (subspecies caffra and birrea) fruits planted in an international provenance trial in Malawi. Vitamin C, calcium, iron, zinc, fat, and fibre content ranged from 6 to 81 mg/100 g; 1.8 to 5.3 mg/100 g; 1.4 to 3.3 mg/100 g; 0.3 to 0.8 mg/100 g; 51.6 to 57.7%; and 4.1 to 6.9%, respectively. Phytochemical scores showed that all nine provenances contained weak (+) concentration of alkaloids. Kalimbeza (Namibia) and Magamba-Turiani (Tanzania) provenances showed moderate (++) concentrations of saponins. Chikhwawa (Malawi), Missira (Mali), and Moamba (Mozambique) provenances had moderate (++) concentrations of tannins. Missira (Mali) and Kalimbeza (Namibia) provenances showed weak (+) concentration of terpenoids. Variations observed in nutritional and phytochemical composition could be attributed to genetic make-up and origin of the genotypes, since all genotypes were planted in the same environment. Therefore, selection of Sclerocarya birrea for domestication purposes should consider the provenance (origin of genotypes) and subspecies levels. Further studies should investigate vegetative propagation and heritability of nutritional and phytochemical traits before the use of seed for propagation