388 research outputs found

    Branching Instabilities in Rapid Fracture: Dynamics and Geometry

    Full text link
    We propose a theoretical model for branching instabilities in 2-dimensional fracture, offering predictions for when crack branching occurs, how multiple cracks develop, and what is the geometry of multiple branches. The model is based on equations of motion for crack tips which depend only on the time dependent stress intensity factors. The latter are obtained by invoking an approximate relation between static and dynamic stress intensity factors, together with an essentially exact calculation of the static ones. The results of this model are in good agreement with a sizeable quantity of experimental data.Comment: 9 pages, 11 figure

    Observed spatiotemporal variability of boundary-layer turbulence over flat, heterogeneous terrain

    Get PDF
    In the spring of 2013, extensive measurements with multiple Doppler lidar systems were performed. The instruments were arranged in a triangle with edge lengths of about 3 km in a moderately flat, agriculturally used terrain in northwestern Germany. For 6 mostly cloud-free convective days, vertical velocity variance profiles were calculated. Weighted-averaged surface fluxes proved to be more appropriate than data from individual sites for scaling the variance profiles; but even then, the scatter of profiles was mostly larger than the statistical error. The scatter could not be explained by mean wind speed or stability, whereas time periods with significantly increased variance contained broader thermals. Periods with an elevated maximum of the variance profiles could also be related to broad thermals. Moreover, statistically significant spatial differences of variance were found. They were not influenced by the existing surface heterogeneity. Instead, thermals were preserved between two sites when the travel time was shorter than the large-eddy turnover time. At the same time, no thermals passed for more than 2 h at a third site that was located perpendicular to the mean wind direction in relation to the first two sites. Organized structures of turbulence with subsidence prevailing in the surroundings of thermals can thus partly explain significant spatial variance differences existing for several hours. Therefore, the representativeness of individual variance profiles derived from measurements at a single site cannot be assumed

    Nocturnal low-level clouds over southern West Africa analysed using high-resolution simulations

    Get PDF
    We performed a high-resolution numerical simulation to study the development of extensive low-level clouds that frequently form over southern West Africa during the monsoon season. This study was made in preparation for a field campaign in 2016 within the Dynamics-aerosol-chemistry-cloud interactions in West Africa (DACCIWA) project and focuses on an area around the city of Savè in southern Benin. Nocturnal low-level clouds evolve a few hundred metres above the ground around the same level as a distinct low-level jet. Several processes are found to determine the spatio-temporal evolution of these clouds including (i) significant cooling of the nocturnal atmosphere caused by horizontal advection with the south-westerly monsoon flow during the first half of the night, (ii) vertical cold air advection due to gravity waves leading to clouds in the wave crests and (iii) enhanced convergence and upward motion upstream of existing clouds that trigger new clouds. The latter is caused by an upward shift of the low-level jet in cloudy areas leading to horizontal convergence in the lower part and to horizontal divergence in the upper part of the cloud layer. Although this single case study hardly allows for a generalisation of the processes found, the results added to the optimisation of the measurements strategy for the field campaign and the observations will be used to test the hypotheses for cloud formation resulting from this study

    Fluid Induced Particle Size Segregation in Sheared Granular Assemblies

    Full text link
    We perform a two-dimensional molecular-dynamics study of a model for sheared bidisperse granular systems under conditions of simple shear and Poiseuille flow. We propose a mechanism for particle-size segregation based on the observation that segregation occurs if the viscous length scale introduced by a liquid in the system is smaller than of the order of the particle size. We show that the ratio of shear rate to viscosity must be small if one wants to find size segregation. In this case the particles in the system arrange themselves in bands of big and small particles oriented along the direction of the flow. Similarly, in Poiseuille flow we find the formation of particle bands. Here, in addition, the variety of time scales in the flow leads to an aggregation of particles in the zones of low shear rate and can suppress size segregation in these regions. The results have been verified against simulations using a full Navier-Stokes description for the liquid.Comment: 11 pages, REVTEX format, ps figures compressed uuencoded separately or by e-mail from [email protected]. A postscript version of the paper will be available from http://www.ica1.uni-stuttgart.de/local/WWW/papers/papers.htm

    Nonequilibrium brittle fracture propagation: Steady state, oscillations and intermittency

    Full text link
    A minimal model is constructed for two-dimensional fracture propagation. The heterogeneous process zone is presumed to suppress stress relaxation rate, leading to non-quasistatic behavior. Using the Yoffe solution, I construct and solve a dynamical equation for the tip stress. I discuss a generic tip velocity response to local stress and find that noise-free propagation is either at steady state or oscillatory, depending only on one material parameter. Noise gives rise to intermittency and quasi-periodicity. The theory explains the velocity oscillations and the complicated behavior seen in polymeric and amorphous brittle materials. I suggest experimental verifications and new connections between velocity measurements and material properties.Comment: To appear in Phys. Rev. Lett., 6 pages, self-contained TeX file, 3 postscript figures upon request from author at [email protected] or [email protected], http://cnls-www.lanl.gov/homepages/rafi/rafindex.htm

    On the origin of the Norwegian lemming.

    Get PDF
    The Pleistocene glacial cycles resulted in significant changes in species distributions, and it has been discussed whether this caused increased rates of population divergence and speciation. One species that is likely to have evolved during the Pleistocene is the Norwegian lemming (Lemmus lemmus). However, the origin of this species, both in terms of when and from what ancestral taxon it evolved, has been difficult to ascertain. Here, we use ancient DNA recovered from lemming remains from a series of Late Pleistocene and Holocene sites to explore the species' evolutionary history. The results revealed considerable genetic differentiation between glacial and contemporary samples. Moreover, the analyses provided strong support for a divergence time prior to the Last Glacial Maximum (LGM), therefore likely ruling out a postglacial colonization of Scandinavia. Consequently, it appears that the Norwegian lemming evolved from a small population that survived the LGM in an ice-free Scandinavian refugium

    Fur glowing under ultraviolet: in situ analysis of porphyrin accumulation in the skin appendages of mammals

    Get PDF
    Examples of photoluminescence (PL) are being reported with increasing frequency in a wide range of organisms from diverse ecosystems. However, the chemical basis of this PL remains poorly defined, and our understanding of its potential ecological function is still superficial. Among mammals, recent analyses have identified free-base porphyrins as the compounds responsible for the reddish ultraviolet-induced photoluminescence (UV-PL) observed in the pelage of springhares and hedgehogs. However, the localization of the pigments within the hair largely remains to be determined. Here, we use photoluminescence multispectral imaging emission and excitation spectroscopy to detect, map, and characterize porphyrinic compounds in skin appendages in situ. We also document new cases of mammalian UV-PL caused by free-base porphyrins in distantly related species. Spatial distribution of the UV-PL is strongly suggestive of an endogenous origin of the porphyrinic compounds. We argue that reddish UV-PL is predominantly observed in crepuscular and nocturnal mammals because porphyrins are photodegradable. Consequently, this phenomenon may not have a specific function in intra- or interspecific communication but rather represents a byproduct of potentially widespread physiological processes.publishedVersio

    Extinctions, genetic erosion and conservation options for the black rhinoceros (Diceros bicornis)

    Get PDF
    The black rhinoceros is again on the verge of extinction due to unsustainable poaching in its native range. Despite a wide historic distribution, the black rhinoceros was traditionally thought of as depauperate in genetic variation, and with very little known about its evolutionary history. This knowledge gap has hampered conservation efforts because hunting has dramatically reduced the species’ once continuous distribution, leaving five surviving gene pools of unknown genetic affinity. Here we examined the range-wide genetic structure of historic and modern populations using the largest and most geographically representative sample of black rhinoceroses ever assembled. Using both mitochondrial and nuclear datasets, we described a staggering loss of 69% of the species’ mitochondrial genetic variation, including the most ancestral lineages that are now absent from modern populations. Genetically unique populations in countries such as Nigeria, Cameroon, Chad, Eritrea, Ethiopia, Somalia, Mozambique, Malawi and Angola no longer exist. We found that the historic range of the West African subspecies (D. b. longipes), declared extinct in 2011, extends into southern Kenya, where a handful of individuals survive in the Masai Mara. We also identify conservation units that will help maintain evolutionary potential. Our results suggest a complete re-evaluation of current conservation management paradigms for the black rhinoceros

    Liquid facets-Related (lqfR) Is Required for Egg Chamber Morphogenesis during Drosophila Oogenesis

    Get PDF
    Clathrin interactor 1 [CLINT1] (also called enthoprotin/EpsinR) is an Epsin N-terminal homology (ENTH) domain-containing adaptor protein that functions in anterograde and retrograde clathrin-mediated trafficking between the trans-Golgi network and the endosome. Removal of both Saccharomyces cerevisiae homologs, Ent3p and Ent5p, result in yeast that are viable, but that display a cold-sensitive growth phenotype and mistrafficking of various vacuolar proteins. Similarly, either knock-down or overexpression of vertebrate CLINT1 in cell culture causes mistrafficking of proteins. Here, we have characterized Drosophila CLINT1, liquid-facets Related (lqfR). LqfR is ubiquitously expressed throughout development and is localized to the Golgi and endosome. Strong hypomorphic mutants generated by imprecise P-element excision exhibit extra macrochaetae, rough eyes and are female sterile. Although essentially no eggs are laid, the ovaries do contain late-stage egg chambers that exhibit abnormal morphology. Germline clones reveal that LqfR expression in the somatic follicle cells is sufficient to rescue the oogenesis defects. Clones of mutant lqfR follicle cells have a decreased cell size consistent with a downregulation of Akt1. We find that while total Akt1 levels are increased there is also a significant decrease in activated phosphorylated Akt1. Taken together, these results show that LqfR function is required to regulate follicle cell size and signaling during Drosophila oogenesis
    corecore