283 research outputs found

    Asymptotics of the Farey Fraction Spin Chain Free Energy at the Critical Point

    Full text link
    We consider the Farey fraction spin chain in an external field hh. Using ideas from dynamical systems and functional analysis, we show that the free energy ff in the vicinity of the second-order phase transition is given, exactly, by ftlogt12h2tforh2t1. f \sim \frac t{\log t}-\frac1{2} \frac{h^2}t \quad \text{for} \quad h^2\ll t \ll 1 . Here t=λGlog(2)(1ββc)t=\lambda_{G}\log(2)(1-\frac{\beta}{\beta_c}) is a reduced temperature, so that the deviation from the critical point is scaled by the Lyapunov exponent of the Gauss map, λG\lambda_G. It follows that λG\lambda_G determines the amplitude of both the specific heat and susceptibility singularities. To our knowledge, there is only one other microscopically defined interacting model for which the free energy near a phase transition is known as a function of two variables. Our results confirm what was found previously with a cluster approximation, and show that a clustering mechanism is in fact responsible for the transition. However, the results disagree in part with a renormalisation group treatment

    Human Coronavirus NL63 Open Reading Frame 3 encodes a virion-incorporated N-glycosylated membrane protein

    Get PDF
    Background: Human pathogenic coronavirus NL63 (hCoV-NL63) is a group 1 (alpha) coronavirus commonly associated with respiratory tract infections. In addition to known non-structural and structural proteins all coronaviruses have one or more accessory proteins whose functions are mostly unknown. Our study focuses on hCoV-NL63 open reading frame 3 (ORF 3) which is a highly conserved accessory protein among coronaviruses. Results: In-silico analysis of the 225 amino acid sequence of hCoV-NL63 ORF 3 predicted a triple membranespanning protein. Expression in infected CaCo-2 and LLC-MK2 cells was confirmed by immunofluorescence and Western blot analysis. The protein was detected within the endoplasmatic reticulum/Golgi intermediate compartment (ERGIC) where coronavirus assembly and budding takes place. Subcellular localization studies using recombinant ORF 3 protein transfected in Huh-7 cells revealed occurrence in ERGIC, Golgi- and lysosomal compartments. By fluorescence microscopy of differently tagged envelope (E), membrane (M) and nucleocapsid (N) proteins it was shown that ORF 3 protein colocalizes extensively with E and M within the ERGIC. Using N-terminally FLAG-tagged ORF 3 protein and an antiserum specific to the C-terminus we verified the proposed topology of an extracellular N-terminus and a cytosolic C-terminus. By in-vitro translation analysis and subsequent endoglycosidase H digestion we showed that ORF 3 protein is N-glycosylated at the N-terminus. Analysis of purified viral particles revealed that ORF 3 protein is incorporated into virions and is therefore an additional structural protein. Conclusions: This study is the first extensive expression analysis of a group 1 hCoV-ORF 3 protein. We give evidence that ORF 3 protein is a structural N-glycosylated and virion-incorporated protein.Web of Scienc

    An extended set of PRDM1/BLIMP1 target genes links binding motif type to dynamic repression

    Get PDF
    The transcriptional repressor B lymphocyte-induced maturation protein-1 (BLIMP1) regulates gene expression and cell fate. The DNA motif bound by BLIMP1 in vitro overlaps with that of interferon regulatory factors (IRFs), which respond to inflammatory/immune signals. At such sites, BLIMP1 and IRFs can antagonistically regulate promoter activity. In vitro motif selection predicts that only a subset of BLIMP1 or IRF sites is subject to antagonistic regulation, but the extent to which antagonism occurs is unknown, since an unbiased assessment of BLIMP1 occupancy in vivo is lacking. To address this, we identified an extended set of promoters occupied by BLIMP1. Motif discovery and enrichment analysis demonstrate that multiple motif variants are required to capture BLIMP1 binding specificity. These are differentially associated with CpG content, leading to the observation that BLIMP1 DNA-binding is methylation sensitive. In occupied promoters, only a subset of BLIMP1 motifs overlap with IRF motifs. Conversely, a distinct subset of IRF motifs is not enriched amongst occupied promoters. Genes linked to occupied promoters containing overlapping BLIMP1/IRF motifs (e.g. AIM2, SP110, BTN3A3) are shown to constitute a dynamic target set which is preferentially activated by BLIMP1 knock-down. These data confirm and extend the competitive model of BLIMP1 and IRF interaction

    Potential of microbiome-based solutions for agrifood systems

    Get PDF
    Host-associated microbiomes are central to food production systems and human nutrition and health. Harnessing the microbiome may help increase food and nutrient security, enhance public health, mitigate climate change and reduce land degradation. Although several microbiome solutions are currently under development or commercialized in the agrifood, animal nutrition, biotechnology, diagnostics, pharmaceutical and health sectors , fewer products than expected have been successfully commercialized beyond food processing, and fewer still have achieved wider adoption by farming, animal husbandry and other end-user communities. This creates concerns about the translatability of microbiome research to practical applications. Inconsistent efficiency and reliability of microbiome solutions are major constraints for their commercialization and further development, and demands urgent attention

    The Role of BACH2 in T Cells in Experimental Malaria Caused by Plasmodium chabaudi chabaudi AS

    Get PDF
    BTB and CNC Homology 1, Basic Leucine Zipper Transcription Factor 2 (BACH2) is a transcription factor best known for its role in B cell development. More recently, it has been associated with T cell functions in inflammatory diseases, and has been proposed as a master transcriptional regulator within the T cell compartment. In this study, we employed T cell-specific Bach2-deficient (B6.Bach2ΔT) mice to examine the role of this transcription factor in CD4+ T cell functions in vitro and in mice infected with Plasmodium chabaudi AS. We found that under CD4+ T cell polarizing conditions in vitro, Th2, and Th17 helper cell subsets were more active in the absence of Bach2 expression. In mice infected with P. chabaudi AS, although the absence of Bach2 expression by T cells had no effect on blood parasitemia or disease pathology, we found reduced expansion of CD4+ T cells in B6.Bach2ΔT mice, compared with littermate controls. Despite this reduction, we observed increased frequencies of Tbet+ IFNγ+ CD4+ (Th1) cells and IL-10-producing Th1 (Tr1) cells in mice lacking Bach2 expression by T cells. Studies in mixed bone marrow chimeric mice revealed T cell intrinsic effects of BACH2 on hematopoietic cell development, and in particular, the generation of CD4+ and CD8+ T cell subsets. Furthermore, T cell intrinsic BACH2 was needed for efficient expansion of CD4+ T cells during experimental malaria in this immunological setting. We also examined the response of B6.Bach2ΔT mice to a second protozoan parasitic challenge with Leishmania donovani and found similar effects on disease outcome and T cell responses. Together, our findings provide new insights into the role of BACH2 in CD4+ T cell activation during experimental malaria, and highlight an important role for this transcription factor in the development and expansion of T cells under homeostatic conditions, as well as establishing the composition of the effector CD4+ T cell compartment during infection

    Взаємодія системи "політика-релігія"

    Get PDF
    Досліджено феномен суспільних явищ політики і релігії у перерізі їх взаємодії, вивчено історичний досвід такого взаємного впливу. Окреме місце відведено аналізу практичного застосування закону України “Про свободу совісті та релігійні організації”.The article explores the phenomenon of social phenomena politics and religion in the context of their interaction, exploring the historical experience of such mutual influence. A separate analysis is given to the practical application of the Law of Ukraine “On Freedom of Conscience and Religious Organizations”

    Long-Lasting Immune Responses 4 Years after GAD-Alum Treatment in Children with Type 1 Diabetes

    Get PDF
    A phase II clinical trial with glutamic acid decarboxylase (GAD) 65 formulated with aluminium hydroxide (GAD-alum) has shown efficacy in preserving residual insulin secretion in children and adolescents with recent-onset type 1 diabetes (T1D). We have performed a 4-year follow-up study of 59 of the original 70 patients to investigate long-term cellular and humoral immune responses after GAD-alum-treatment. Peripheral blood mononuclear cells (PBMC) were stimulated in vitro with GAD65. Frequencies of naïve, central and effector memory CD4+ and CD8+ T cells were measured, together with cytokine secretion, proliferation, gene expression and serum GAD65 autoantibody (GADA) levels. We here show that GAD-alum-treated patients display increased memory T-cell frequencies and prompt T-cell activation upon in vitro stimulation with GAD65, but not with control antigens, compared with placebo subjects. GAD65-induced T-cell activation was accompanied by secretion of T helper (Th) 1, Th2 and T regulatory cytokines and by induction of T-cell inhibitory pathways. Moreover, post-treatment serum GADA titres remained persistently increased in the GAD-alum arm, but did not inhibit GAD65 enzymatic activity. In conclusion, memory T- and B-cell responses persist 4 years after GAD-alum-treatment. In parallel to a GAD65-induced T-cell activation, our results show induction of T-cell inhibitory pathways important for regulating the GAD65 immunity

    IL-17-producing γδ T cells switch migratory patterns between resting and activated states

    Get PDF
    Interleukin 17-producing γδ T (γδT17) cells have unconventional trafficking characteristics, residing in mucocutaneous tissues but also homing into inflamed tissues via circulation. Despite being fundamental to γδ T17-driven early protective immunity and exacerbation of autoimmunity and cancer, migratory cues controlling γδT17 cell positioning in barrier tissues and recruitment to inflammatory sites are still unclear. Here we show that γδT17 cells constitutively express chemokine receptors CCR6 and CCR2. While CCR6 recruits resting γδT17 cells to the dermis, CCR2 drives rapid γδT17 cell recruitment to inflamed tissues during autoimmunity, cancer and infection. Downregulation of CCR6 by IRF4 and BATF upon γδT17 activation is required for optimal recruitment of γδT17 cells to inflamed tissue by preventing their sequestration into uninflamed dermis. These findings establish a lymphocyte trafficking model whereby a hierarchy of homing signals is prioritized by dynamic receptor expression to drive both tissue surveillance and rapid recruitment of γδT17 cells to inflammatory lesionsThis work was supported by National Health and Medical Research Council project grants 1066781 and 1054925. A.K. is supported by the Sylvia and Charles Viertel foundation

    IL-17+ CD8+ T cell suppression by dimethyl fumarate associates with clinical response in multiple sclerosis

    Get PDF
    IL-17-producing CD8+ (Tc17) cells are enriched in active lesions of patients with multiple sclerosis (MS), suggesting a role in the pathogenesis of autoimmunity. Here we show that amelioration of MS by dimethyl fumarate (DMF), a mechanistically elusive drug, associates with suppression of Tc17 cells. DMF treatment results in reduced frequency of Tc17, contrary to Th17 cells, and in a decreased ratio of the regulators RORC-to-TBX21, along with a shift towards cytotoxic T lymphocyte gene expression signature in CD8+ T cells from MS patients. Mechanistically, DMF potentiates the PI3K-AKT-FOXO1-T-BET pathway, thereby limiting IL-17 and RORγt expression as well as STAT5-signaling in a glutathione-dependent manner. This results in chromatin remodeling at the Il17 locus. Consequently, T-BET-deficiency in mice or inhibition of PI3K-AKT, STAT5 or reactive oxygen species prevents DMF-mediated Tc17 suppression. Overall, our data disclose a DMF-AKT-T-BET driven immune modulation and suggest putative therapy targets in MS and beyond
    corecore