287 research outputs found
Asymptotics of the Farey Fraction Spin Chain Free Energy at the Critical Point
We consider the Farey fraction spin chain in an external field . Using
ideas from dynamical systems and functional analysis, we show that the free
energy in the vicinity of the second-order phase transition is given,
exactly, by
Here is a reduced
temperature, so that the deviation from the critical point is scaled by the
Lyapunov exponent of the Gauss map, . It follows that
determines the amplitude of both the specific heat and susceptibility
singularities. To our knowledge, there is only one other microscopically
defined interacting model for which the free energy near a phase transition is
known as a function of two variables.
Our results confirm what was found previously with a cluster approximation,
and show that a clustering mechanism is in fact responsible for the transition.
However, the results disagree in part with a renormalisation group treatment
Human Coronavirus NL63 Open Reading Frame 3 encodes a virion-incorporated N-glycosylated membrane protein
Background: Human pathogenic coronavirus NL63 (hCoV-NL63) is a group 1 (alpha) coronavirus commonly
associated with respiratory tract infections. In addition to known non-structural and structural proteins all
coronaviruses have one or more accessory proteins whose functions are mostly unknown. Our study focuses on
hCoV-NL63 open reading frame 3 (ORF 3) which is a highly conserved accessory protein among coronaviruses.
Results: In-silico analysis of the 225 amino acid sequence of hCoV-NL63 ORF 3 predicted a triple membranespanning
protein. Expression in infected CaCo-2 and LLC-MK2 cells was confirmed by immunofluorescence and
Western blot analysis. The protein was detected within the endoplasmatic reticulum/Golgi intermediate
compartment (ERGIC) where coronavirus assembly and budding takes place. Subcellular localization studies using
recombinant ORF 3 protein transfected in Huh-7 cells revealed occurrence in ERGIC, Golgi- and lysosomal
compartments. By fluorescence microscopy of differently tagged envelope (E), membrane (M) and nucleocapsid (N)
proteins it was shown that ORF 3 protein colocalizes extensively with E and M within the ERGIC. Using N-terminally
FLAG-tagged ORF 3 protein and an antiserum specific to the C-terminus we verified the proposed topology of an
extracellular N-terminus and a cytosolic C-terminus. By in-vitro translation analysis and subsequent endoglycosidase
H digestion we showed that ORF 3 protein is N-glycosylated at the N-terminus. Analysis of purified viral particles
revealed that ORF 3 protein is incorporated into virions and is therefore an additional structural protein.
Conclusions: This study is the first extensive expression analysis of a group 1 hCoV-ORF 3 protein. We give
evidence that ORF 3 protein is a structural N-glycosylated and virion-incorporated protein.Web of Scienc
An extended set of PRDM1/BLIMP1 target genes links binding motif type to dynamic repression
The transcriptional repressor B lymphocyte-induced maturation protein-1 (BLIMP1) regulates gene expression and cell fate. The DNA motif bound by BLIMP1 in vitro overlaps with that of interferon regulatory factors (IRFs), which respond to inflammatory/immune signals. At such sites, BLIMP1 and IRFs can antagonistically regulate promoter activity. In vitro motif selection predicts that only a subset of BLIMP1 or IRF sites is subject to antagonistic regulation, but the extent to which antagonism occurs is unknown, since an unbiased assessment of BLIMP1 occupancy in vivo is lacking. To address this, we identified an extended set of promoters occupied by BLIMP1. Motif discovery and enrichment analysis demonstrate that multiple motif variants are required to capture BLIMP1 binding specificity. These are differentially associated with CpG content, leading to the observation that BLIMP1 DNA-binding is methylation sensitive. In occupied promoters, only a subset of BLIMP1 motifs overlap with IRF motifs. Conversely, a distinct subset of IRF motifs is not enriched amongst occupied promoters. Genes linked to occupied promoters containing overlapping BLIMP1/IRF motifs (e.g. AIM2, SP110, BTN3A3) are shown to constitute a dynamic target set which is preferentially activated by BLIMP1 knock-down. These data confirm and extend the competitive model of BLIMP1 and IRF interaction
Potential of microbiome-based solutions for agrifood systems
Host-associated microbiomes are central to food production systems and human nutrition and health. Harnessing the microbiome may help increase food and nutrient security, enhance public health, mitigate climate change and reduce land degradation. Although several microbiome solutions are currently under development or commercialized in the agrifood, animal nutrition, biotechnology, diagnostics, pharmaceutical and health sectors , fewer products than expected have been successfully commercialized beyond food processing, and fewer still have achieved wider adoption by farming, animal husbandry and other end-user communities. This creates concerns about the translatability of microbiome research to practical applications. Inconsistent efficiency and reliability of microbiome solutions are major constraints for their commercialization and further development, and demands urgent attention
The Role of BACH2 in T Cells in Experimental Malaria Caused by Plasmodium chabaudi chabaudi AS
BTB and CNC Homology 1, Basic Leucine Zipper Transcription Factor 2 (BACH2) is a transcription factor best known for its role in B cell development. More recently, it has been associated with T cell functions in inflammatory diseases, and has been proposed as a master transcriptional regulator within the T cell compartment. In this study, we employed T cell-specific Bach2-deficient (B6.Bach2ΔT) mice to examine the role of this transcription factor in CD4+ T cell functions in vitro and in mice infected with Plasmodium chabaudi AS. We found that under CD4+ T cell polarizing conditions in vitro, Th2, and Th17 helper cell subsets were more active in the absence of Bach2 expression. In mice infected with P. chabaudi AS, although the absence of Bach2 expression by T cells had no effect on blood parasitemia or disease pathology, we found reduced expansion of CD4+ T cells in B6.Bach2ΔT mice, compared with littermate controls. Despite this reduction, we observed increased frequencies of Tbet+ IFNγ+ CD4+ (Th1) cells and IL-10-producing Th1 (Tr1) cells in mice lacking Bach2 expression by T cells. Studies in mixed bone marrow chimeric mice revealed T cell intrinsic effects of BACH2 on hematopoietic cell development, and in particular, the generation of CD4+ and CD8+ T cell subsets. Furthermore, T cell intrinsic BACH2 was needed for efficient expansion of CD4+ T cells during experimental malaria in this immunological setting. We also examined the response of B6.Bach2ΔT mice to a second protozoan parasitic challenge with Leishmania donovani and found similar effects on disease outcome and T cell responses. Together, our findings provide new insights into the role of BACH2 in CD4+ T cell activation during experimental malaria, and highlight an important role for this transcription factor in the development and expansion of T cells under homeostatic conditions, as well as establishing the composition of the effector CD4+ T cell compartment during infection
Взаємодія системи "політика-релігія"
Досліджено феномен суспільних явищ політики і релігії у перерізі їх взаємодії, вивчено історичний досвід такого взаємного впливу. Окреме місце відведено аналізу практичного застосування закону України “Про свободу совісті та релігійні організації”.The article explores the phenomenon of social phenomena politics and religion in the context of their interaction, exploring the historical experience of such mutual influence. A separate analysis is given to the practical application of the Law of Ukraine “On Freedom of Conscience and Religious Organizations”
Long-Lasting Immune Responses 4 Years after GAD-Alum Treatment in Children with Type 1 Diabetes
A phase II clinical trial with glutamic acid decarboxylase (GAD) 65 formulated with aluminium hydroxide (GAD-alum) has shown efficacy in preserving residual insulin secretion in children and adolescents with recent-onset type 1 diabetes (T1D). We have performed a 4-year follow-up study of 59 of the original 70 patients to investigate long-term cellular and humoral immune responses after GAD-alum-treatment. Peripheral blood mononuclear cells (PBMC) were stimulated in vitro with GAD65. Frequencies of naïve, central and effector memory CD4+ and CD8+ T cells were measured, together with cytokine secretion, proliferation, gene expression and serum GAD65 autoantibody (GADA) levels. We here show that GAD-alum-treated patients display increased memory T-cell frequencies and prompt T-cell activation upon in vitro stimulation with GAD65, but not with control antigens, compared with placebo subjects. GAD65-induced T-cell activation was accompanied by secretion of T helper (Th) 1, Th2 and T regulatory cytokines and by induction of T-cell inhibitory pathways. Moreover, post-treatment serum GADA titres remained persistently increased in the GAD-alum arm, but did not inhibit GAD65 enzymatic activity. In conclusion, memory T- and B-cell responses persist 4 years after GAD-alum-treatment. In parallel to a GAD65-induced T-cell activation, our results show induction of T-cell inhibitory pathways important for regulating the GAD65 immunity
IL-17-producing γδ T cells switch migratory patterns between resting and activated states
Interleukin 17-producing γδ T (γδT17) cells have unconventional trafficking characteristics, residing in mucocutaneous tissues but also homing into inflamed tissues via circulation. Despite being fundamental to γδ T17-driven early protective immunity and exacerbation of autoimmunity and cancer, migratory cues controlling γδT17 cell positioning in barrier tissues and recruitment to inflammatory sites are still unclear. Here we show that γδT17 cells constitutively express chemokine receptors CCR6 and CCR2. While CCR6 recruits resting γδT17 cells to the dermis, CCR2 drives rapid γδT17 cell recruitment to inflamed tissues during autoimmunity, cancer and infection. Downregulation of CCR6 by IRF4 and BATF upon γδT17 activation is required for optimal recruitment of γδT17 cells to inflamed tissue by preventing their sequestration into uninflamed dermis. These findings establish a lymphocyte trafficking model whereby a hierarchy of homing signals is prioritized by dynamic receptor expression to drive both tissue surveillance and rapid recruitment of γδT17 cells to inflammatory lesionsThis
work was supported by National Health and Medical Research Council project grants
1066781 and 1054925. A.K. is supported by the Sylvia and Charles Viertel foundation
- …