161 research outputs found

    Density profiles and collective excitations of a trapped two component Fermi vapour

    Get PDF
    We discuss the ground state and the small-amplitude excitations of a degenerate vapour of fermionic atoms placed in two hyperfine states inside a spherical harmonic trap. An equations-of-motion approach is set up to discuss the hydrodynamic dissipation processes from the interactions between the two components of the fluid beyond mean-field theory and to emphasize analogies with spin dynamics and spin diffusion in a homogeneous Fermi liquid. The conditions for the establishment of a collisional regime via scattering against cold-atom impurities are analyzed. The equilibrium density profiles are then calculated for a two-component vapour of 40K atoms: they are little modified by the interactions for presently relevant values of the system parameters, but spatial separation of the two components will spontaneously arise as the number of atoms in the trap is increased. The eigenmodes of collective oscillation in both the total particle number density and the concentration density are evaluated analytically in the special case of a symmetric two-component vapour in the collisional regime. The dispersion relation of the surface modes for the total particle density reduces in this case to that of a one-component Fermi vapour, whereas the frequencies of all other modes are shifted by the interactions.Comment: 14 pages, 4 figure

    Performance Studies of Prototype II for the CASTOR forward Calorimeter at the CMS Experiment

    Get PDF
    We present results of the performance of the second prototype of the CASTOR quartz-tungsten sampling calorimeter, to be installed in the very forward region of the CMS experiment at the LHC. The energy linearity and resolution, as well as the spatial resolution of the prototype to electromagnetic and hadronic showers are studied with E=20-200 GeV electrons, E=20-350 GeV pions, and E=50,150 GeV muons from beam tests carried out at CERN/SPS in 2004. The responses of the calorimeter using two different types of photodetectors (avalanche photodiodes APDs, and photomultiplier tubes PMTs) are compared.Comment: 16 pages, 22 figs., submitted to EPJ-

    First performance studies of a prototype for the CASTOR forward calorimeter at the CMS experiment

    Get PDF
    We present results on the performance of the first prototype of the CASTOR quartz-tungsten sampling calorimeter, to be installed in the very forward region of the CMS experiment at the LHC. This study includes GEANT Monte Carlo simulations of the Cherenkov light transmission efficiency of different types of air-core light guides, as well as analysis of the calorimeter linearity and resolution as a function of energy and impact-point, obtained with 20-200 GeV electron beams from CERN/SPS tests in 2003. Several configurations of the calorimeter have been tested and compared, including different combinations of (i) structures for the active material of the calorimeter (quartz plates and fibres), (ii) various light-guide reflecting materials (glass and foil reflectors) and (iii) photodetector devices (photomultipliers and avalanche photodiodes)

    Decay properties of high spin states in Mn

    Get PDF
    The electromagnetic decay properties of high spin states in 52Mn have been studied through various experiments with the GASP and EUROBALL arrays plus the ISIS charged-particle detector, the Neutron-Wall and the Recoil Filter Detector. From 7-7-particles coincidence measurements, spins and parities of these states have been determined and using the Doppler-shift attenuation method the mean life of some of these states have been determined. These results are compared with large scale shell-model calculations in the full fp shell

    Determination of the neutron fluence, the beam characteristics and the backgrounds at the CERN-PS TOF facility

    Get PDF

    CMS physics technical design report : Addendum on high density QCD with heavy ions

    Get PDF
    Peer reviewe
    corecore