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Abstract

We discuss the ground state and the small-amplitude excitations of a degenerate vapour of
fermionic atoms placed in two hyperfine states inside a spherical harmonic trap. An equations-
of-motion approach is set up to discuss the hydrodynamic dissipation processes from the inter-
actions between the two components of the fluid beyond mean-field theory and to emphasize
analogies with spin dynamics and spin diffusion in a homogeneous Fermi liquid. The condi-
tions for the establishment of a collisional regime via scattering against cold-atom impurities
are analyzed. The equilibrium density profiles are then calculated for a two-component vapour
of 40K atoms: they are little modified by the interactions for presently relevant values of the
system parameters, but spatial separation of the two components will spontaneously arise as
the number of atoms in the trap is increased. The eigenmodes of collective oscillation in both
the total particle number density and the concentration density are evaluated analytically in
the special case of a symmetric two-component vapour in the collisional regime. The disper-
sion relation of the surface modes for the total particle density reduces in this case to that of
a one-component Fermi vapour, whereas the frequencies of all other modes are shifted by the
interactions.

PACS. 67.40.Db Quantum statistical theory; ground state, elementary excitations

1 Introduction

The experimental realization of Bose-Einstein condensation in confined vapours of alkali atoms
[1, 2, 3, 4] has given impulse to the study of dilute quantal fluids, including vapours of fermionic
atoms. Magneto-optical confinement of fermionic species has been reported for 6Li [5] and 40K
[6]. DeMarco et al. [7] have realized magnetic trapping of 40K atoms in two different hyperfine
states corresponding to |F = 9/2, Fz = 9/2〉 and |F = 9/2, Fz = 7/2〉, with the possibility
of varying the relative ‘ concentration of these two components of the vapour up to selective
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removal of one of them. Earlier experimental work on double Bose condensates [8, 9] and some
of the related theoretical work on the equilibrium state and on the excitation properties of
bosonic mixtures [10, 11, 12, 13, 14, 15] may also be recalled at this point.

The s-wave collisions between pairs of fermions in the same hyperfine state are suppressed by
the Pauli principle, so that to leading order only p-wave scattering and dipole-dipole magnetic
interactions remain in a one-component, spin-polarized Fermi vapour. These effects are very
weak at very low temperatures and the vapour may be treated as an ideal Fermi gas [16, 17, 18,
19]. In the two-component vapours studied by DeMarco et al. [7], however, s-wave scattering
is operative between pairs of 40K atoms in different hyperfine states. They have thus been
able to measure the s-wave scattering length of 40K, to observe directly the p-wave energy
threshold law and to evaporatively cool the vapour down to 5 mK. While the s-wave scattering
determined in this way for 40K is repulsive (i.e. is described by a positive scattering length),
a negative scattering length for 6Li atoms holds promise of achieving a superfluid state in a
mixture of 6Li atoms prepared in two hyperfine states [20]. The insurgence of superfluidity
may be revealed through the study of the elementary excitations of the vapour [21, 22, 23].

In the present work we extend to two-component interacting Fermi vapours in the normal
(non-superfluid) state our former study of the small-amplitude excitationsof density fluctuations
in an ideal Fermi gas confined in a harmonic trap at zero temperature [24]. We make use of
an equations-of-motion approach which is formulated in full generality in Sect. 2 in order to
stress the analogies between the problem of present interest and that of spin dynamics and spin
diffusion in a homogeneous Fermi liquid in a given state of partial spin polarization [25, 26].
The nature of the assumptions which are adopted in our further calculations on confined Fermi
vapours is made more explicit and justified by this discussion.

In Sect. 3 we assume complete equilibrium for the two-component vapour under spherical
harmonic confinement and evaluate the Thomas-Fermi ground-state densities upon relating the
components of the kinetic stress tensor to the local densities by the ideal-gas formula. We give
specific attention to three different cases, i.e. (i) the 40K system studied by DeMarco et al. [7],
(ii) a strong-coupling regime in which the repulsive interactions between the two components
of a symmetric vapour drive their spatial separation, and (iii) a simplified description of the
weak-coupling regime in a symmetric vapour. By a symmetric vapour as treated in (ii) and (iii)
we mean equal numbers of particles in the two components as well as equal masses and equal
confinements, as is relevant in relation to the experiments of DeMarco et al. [7]. The form
obtained in (iii) for the density profile is used in Sect. 4 to obtain an analytic determination of
the eigenvectors and of the dispersion relation for both in-phase and out-of-phase oscillations
in a symmetric vapour in the collisional regime. The role of the interactions in comparison
with the vibrational properties of an ideal one-component Fermi gas is of main interest here.
Finally, Sect. 5 gives a brief summary of our main results and offers some concluding remarks.

2 Generalized quantum hydrodynamics in a two com-
ponent Fermi fluid

We review in this section some general properties of the dynamics of a two-component fluid with
given equilibrium densities nσ(r), σ being a component index that we shall write as σ = (↑, ↓)
to stress the analogy with the problem of spin dynamics in a partially spin-polarized electron
gas [26]. The Hamiltonian describing the fluid in the presence of external scalar potentials
Vσ(r, t) is

H =
∑

σ

∫

d3r ψ̂†
σ(r, t)

[

−
h̄2

2mσ
∇2

r + Vσ(r, t)

]

ψ̂σ(r, t)

+
1

2

∑

σ,σ′

∫

d3r

∫

d3r′φσ,σ′(r, r′)ψ̂†
σ(r, t)ψ̂

†
σ′(r

′, t)ψ̂σ′(r′, t)ψ̂σ(r, t) , (2.1)
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where ψ̂σ(r, t) are the field operators and φσ,σ′(r, r′) the interatomic potentials. Redistributions
of population in the two states are not allowed.

The equations of motions for the partial particle densities nσ(r, t) are obtained by a standard
procedure (see e.g. [27]), involving (i) the derivation of the equation of motion for the density
matrix ρσ(x,x

′; t) = 〈ψ̂†
σ(r, t)ψ̂σ(r, t)〉 from the Hamiltonian (2.1), and (ii) projection on the

diagonal r = (x+ x
′)/2. Setting r

′ = x− x
′, the result is

mσ
∂2nσ(r, t)

∂t2
= ∇(r)

α ∇
(r)
β Πσ

αβ(r, t) +∇(r)
α

[

nσ(r, t)∇
(r)
α V H

σ (r, t)
]

+
∑

σ′

∫

d3r′∇(r)
α

{[

∇(r)
α φσ,σ′(r, r′)

]

〈ρσ(r, t)ρσ′(r′, t)〉c
}

, (2.2)

where the convention of summation over repeated Cartesian indices in the derivatives has been
adopted. In Eq. (2.2) we have defined the kinetic stress tensors

Πσ
αβ(r, t) = −

h̄2

mσ
∇(r′)

α ∇
(r′)
β ρσ(r− r

′/2, r+ r
′/2; t)

∣

∣

r′=0
(2.3)

and the mean-field potentials

V H
σ (r, t) = Vσ(r, t) +

∑

σ′

∫

d3r′ φσ,σ′(r, r′)nσ′(r′, t) . (2.4)

The non-mean-field effects are collected in the last term on the RHS of Eq. (2.2), where ρσ(r, t)
is the density operator and 〈ρσ(r, t)ρσ′(r′, t)〉c is the cluster part of the density-density corre-
lations. No assumption has as yet been made on the temperature of the fluid.

The equilibrium equations determining the density profiles nσ(r) are obtained from Eq. (2.2)
by taking the static limit. The equations of motion for the density fluctuations δnσ(r, t) driven
by weak external potentials are then obtained by writing nσ(r, t) = nσ(r)+δnσ(r, t) in Eq. (2.2)
and by linearizing it. We shall go through these steps in Section 3 and 4 for a dilute two-
component Fermi vapour. Here we proceed to introduce the approximations that we shall
make in the dynamical treatment of Sect. 4 by discussing the non-mean-field term in Eq. (2.2).

2.1 Interdiffusion in the two component fluid

We evaluate in this section the role of collisions between fluctuations in determining damp-
ing of collective motions in the two-component fluid. As a preliminary we recall that the
linearized equations of motion for the partial density fluctuations in the two-component fluid
are conveniently transformed into those for the total particle density fluctuation δn(r, t) and
for the concentration fluctuation δM(r, t) (the ”magnetization” fluctuation in the electron gas
analogue) by taking simple linear combinations of the two δnσ(r, t)’s (see e.g.[28]).

We consider first the dynamics of small fluctuations around a homogeneous equilibrium
state, where we can appeal to the treatment given by Caccamo et al. [26] for the evaluation
of the interdiffusion (or ”spin diffusion”) coefficient. Momentum conservation ensures that the
only non-vanishing inverse relaxation time in the hydrodynamic limit is the interdiffusion one,
say τ−1

MM , which is written as
τ−1
MM = nγM/(mn↑n↓) (2.5)

where n↑ and n↓ are the partial equilibrium densities, n = n↑ + n↓ is the total density and we
have assumed m = m↑ = m↓. An exact expression for the quantity γM in Eq. (2.5) is obtained
from the non-mean-field term in Eq. (2.2) in the appropriate hydrodynamic limit. In the case
of a central pair potential this reads

γM =

∫

d3r (k̂ · ∇)φ↑↓(r)
∂〈ρ↑(R)ρ↓(R+ r)〉c

∂v↑
(2.6)

in a reference frame where the component ↑ is at rest and the other component is flowing with
a uniform drift velocity v↓.
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The Fourier transform of the non-equilibrium correlation function in Eq. (2.6) is evaluated
in a binary collision approximation by the decoupling procedure used by Baym [29] in treating
the electrical resistance of metals (see also Kadanoff and Baym [30]). Namely,

ImF.T. {〈ρ↑(R)ρ↓(R+ r)〉c}k =

1

2
nh̄φ↑↓(k)

∫ ∞

−∞

dω

2π

[

S̃↑↑(k, ω)S̃↓↓(−k,−ω)− S̃↑↑(−k,−ω)S̃↓↓(k, ω)
]

, (2.7)

where S̃σσ(kω) is the van Hove dynamic structure factor of each component in the non-
equilibrium state. For the dilute Fermi fluid of present interest we can replace the interaction
potential in Eq. (2.7) by a contact interaction and S̃σσ(kω) by the ideal-gas value correspond-
ing to a displaced Fermi sphere for the ↓ component. Following the lines of the calculation
given in Ref. [26] and taking for simplicity n↑ = n↓ in Eq. (2.5), we find to leading order in the
temperature T the result

τ−1
MM = (4πma2↑↓E

2
F /3h̄

3)(T/TF )
2 . (2.8)

Here, a↑↓ is the (triplet) scattering length, EF is the Fermi energy and TF = EF/kB . This
result could also be obtained directly from Eq. (6.8) in Ref. [26] upon replacing a screened
Coulomb interaction by a contact interaction.

The result given in Eq. (2.8) above for a homogeneous, two-component Fermi fluid can now
be used for an estimate of the role of collisions in a confined Fermi fluid. We replace the Fermi
energy EF by its local value, which in the case of harmonic confinement in a spherical trap
characterized by a frequency ωf is

EF = (3N)1/3h̄ωf (2.9)

with N the total number of fermions. Hence,

(ωfτMM )−1 = (4π/31/3)(N1/3a↑↓/aho)
2(T/TF )

2 (2.10)

aho = (h̄/mωf )
1/2 being the harmonic-oscillator length. A similar result has been reported

recently by Vichi and Stringari [31] from a collision-integral approach.
In summary, because of momentum conservation the damping processes in the hydrody-

namic limit of a two-component Fermi fluid are associated with collisions between the two
components and affect only their relative motions. These processes vanish quadratically with
decreasing temperature because of Fermi statistics (see also [25]). A collisional regime may
nevertheless be established by scattering against impurities (see for instance the work of Ruck-
enstein and Lévy [32] on spin dynamics in paramagnetic quantum fluids). We turn below to
an estimate of these collision processes in the normal Fermi fluid of present interest.

2.2 Collisional regime via impurity scattering

A collisional regime is established in the low-temperature vapour for both in-phase and out-of-

phase modes of motion of the two components when the inequality

ωτ ≪ 1 (2.11)

holds, τ being the collision time for scattering of fermions against impurities and ω being on
the scale of the trap frequency (ω ≃ ωf ) for low-frequency modes.

For an estimate of the needed number Ns of scatterers we take the impurities as cold
atoms with a mean velocity which is negligible relative to that of the fermions. We can then
write τ = l/v, l and v being the mean free path and the average speed of a fermion. We have
l = Σ−1, where Σ is the macroscopic cross-section given by Σ = nsσ in terms of the density ns of
scatterers and of the cross-section σ for fermion-impurity scattering (see for instance Ref. [33]).

4



Setting ns = Ns(4πa
3
ho/3)

−1 and σ = 4πa2sc with asc the fermion-impurity scattering length,
and taking v = (3EF/4m)1/2 with EF given by Eq. (2.9), we find

ωfτ =
(4/27)1/2

Ns(3N)1/6

(

aho
as

)2

(2.12)

For illustrative purposes we consider the case of 39K or 41K bosonic impurities in the gas of
40K fermions studied by DeMarco et al. [7] (N ≃ 107 and ωf ≃ 209 s−1, the latter being the
geometric mean of the radial and axial frequencies in the experiment). From the known values
of the 39K-40K and 41K-40K scattering lengths (as ≃3600 and as ≃ 93 Bohr radii, respectively)
we find that a number of 39K impurities of order Ns ≃ 10−6N , or of 41K impurities of order
Ns ≃ 10−3N , would suffice to verify the inequality (2.11) with ω = ωf .

We conclude, therefore, that a collisional regime can easily be established for the low-
frequency excitations of trapped Fermi vapours. This regime reflects rather directly the quantal
statistics of the vapour [24] and we study it for the two-component Fermi fluid in Sect. 4 below.
Excitations in the collisionless regime are of less interest, since they mostly reflect the frequency
of the trap [24, 31].

3 Equilibrium density profiles in spherical confine-

ment

As already discussed in Sect. 1, we treat a dilute two-component Fermi gas at zero tempera-
ture in which only s-wave scattering between pairs of fermions in different hyperfine states is
operative. This coupling is described by the parameter f = 4πh̄2a↑↓/m. In the experimentally
relevant situation the two populations have not only the same mass but also essentially identical
numbers and trap frequencies. However, we shall impose the equality N↑ = N↓ = N/2 only
later below.

We take the gas as being statically in the equilibrium state and dynamically in the collisional
regime. As in our earlier work [24], we relate the kinetic stress tensor of each component to its
local density by the homogeneous Fermi gas formula,

Πσ
αβ(r, t) = δαβ

2

5
A[nσ(r, t)]

5/3 (3.1)

where A = h̄2(6π2)2/3/2m. Such a local density approximation assumes that the length scale
for the variation of the density profiles in space is large relative to the inverse Fermi wave
number k−1

f and to the length c/ω, with ω the excitation frequency and c the velocity of sound
propagation in the homogeneous fluid.

The equilibrium density profiles are then easily obtained from the static limit of Eq. (2.2)
in the mean-field approximation. They have the Thomas-Fermi form,

nσ(r) = θ[ǫσ − Vσ(r)− fnσ̄(r)]
{

A−1[ǫσ − Vσ(r)− fnσ̄(r)]
}3/2

, (3.2)

where σ̄ denotes the component different from σ. In Eq. (3.2) Vσ(r) are the static confining
potentials and ǫσ are the chemical potentials, to be determined from the condition Nσ =
∫

d3r nσ(r). We emphasize that the Nσ’s are fixed, i.e. these equations do not allow for
redistributions of population in the two hyperfine states.

In the same approximation the total energy of the vapour is the sum of three terms, i.e. a
kinetic energy Ekin, a potential energy Eho and an interaction energy Eint. These are

Ekin = (6π2)2/3
3h̄2

5m

∑

σ

∫

d3r [nσ(r)]
5/3 , (3.3)

Eho =
∑

σ

∫

d3r nσ(r)Vσ(r) (3.4)
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Figure 1: Density profiles n↑(r) and n↓(r) (in units of a−3

ho ) versus
distance r from the centre of a spherical trap (in units of aho) in
a mixture of 107 fermions at composition N↑/N↓ = 3. The long
(short) dashed curves show the profiles corresponding to an s-wave
scattering length a↑↓ = 157 aB (a↑↓ = −157 aB), relatively to the
case of the ideal mixture (full curves).

and

Eint =
∑

σ

∫

d3r n↑(r)n↓(r) (3.5)

These will be helpful in understanding the behaviour of the vapour at strong coupling in
Sect. 3.2.

3.1 An illustrative example for a weakly coupled 40K vapour

Figure 1 reports the numerical results that we obtain from Eq. (3.2) for the density profiles
in a gas subject to spherical harmonic confinement, with system parameters chosen after the
experiment of DeMarco et al. [7] (ωf = (ω‖ω

2
⊥)

1/3 = 209 s−1, N = 107 and a↑↓ = 157 Bohr
radii) but at composition N↑/N↓ = 3. The cases a↑↓ = −157 aB and a↑↓ = 0 are also shown.

Evidently, the effects of the interactions are small in this situation and very simple to
understand: a repulsion (attraction) between the two components disfavours (favours) their
overlap in the central part of the trap.

3.2 Spatial separation of the two components at strong coupling

We may expect that in the case of repulsive interactions, with increasing coupling strength
and still barring transitions between the two hyperfine levels as already noted under Eq. (3.2),
the gas will be led to diminish its total energy by reducing the spatial overlap between the
two components. Figure 2 shows how such symmetry breaking occurs in a spherical trap, for
N↑ = N↓ and under the condition that overall spherical symmetry be maintained. In this case
one component is pushed away from the centre of the trap and the gas configuration becomes
that of a central core enriched in one component and surrounded by a spherical shell enriched
in the other.

6



Figure 2: Density profiles (in units of a−3

ho ) versus distance r from
the centre of a spherical trap (in units of aho) in a symmetric mixture
of fermions, at various values of the coupling strength parameter
γ. In (a), the profiles of the two components are still in complete
overlap. Spatial symmetry breaking is first visible in (b). Separation
of the two components (shown by full and dashed curves) continues
through (c) and (d).
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-0.2

0

0.2

Figure 3: The ratio of the interaction energy Eint to the sum
Eho + Ekin of the harmonic-oscillator and kinetic energies, plotted
against the coupling strength γ ≃ 0.5N1/6(a↑↓/aho) for a symmetric
mixture of fermions in spherical confinement. The inset shows the
first derivative of the same function.

The symmetry breaking is driven by the competition between the repulsive interaction
energy, favouring spatial separation of the components, and the kinetic energy disfavouring
localization. Evidently and in contrast to the behaviour illustrated in Figure 2, a gas confined
in an axially symmetric trap will tend to reduce its energy via relative shifts in the centres
of the two clouds. A rich phase diagram will ensue if ”spin flips” between the two hyperfine
states are also allowed. In the following we estimate the critical coupling strength at which
spatial symmetry breaking occurs in terms of the number of fermions (or alternatively of the
a↑↓ scattering length) for the case illustrated in Figure 2.

The four cases of density profiles illustrated in Figure 2 are labelled by a parameter γ, which
is defined by

γ = αN1/6(a↑↓/aho) (3.6)

with α = 21/331/6(8192/2835π2) [31]. In fact the value of γ in Eq. (3.6) is obtained as γ =
[Eint/(Eho +Ekin)]0 when the ratio Eint/(Eho +Ekin) is calculated from the density profile of
the Fermi gas in the absence of interactions. Figure 3 reports the true values of Eint/(Eho +
Ekin) against γ for the system described in Figure 2. The (obvious) linear shape of this
function at weak couplings gently bends over with increasing coupling, until an almost sharp
break occurs at spatial symmetry breaking. This is emphasized in the inset in Figure 3 giving
the derivative of Eint/(Eho + Ekin) with respect to γ. We have checked that the same plot is
obtained for Eint/(Eho+Ekin) by varying a↑↓/aho at constant N and by varying N at constant
a↑↓/aho.

In the experiments of DeMarco et al. [7] on 40K with N ≃ 107, the value of γ is γ ≃ 0.022
i.e. still very far from the critical value γc ≃ 0.535 for the symmetry breaking illustrated in
Figures 2 and 3. The weak dependence of γ on N in Eq. (3.6) implies that a number of 40K
atoms of order 1015 would have to be reached if all other system parameters remain the same.
A parallel increase in the ratio a↑↓/aho as suggested by Eq. (3.6) would evidently be helpful in
relaxing such stringent condition.
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Figure 4: Illustrating the accuracy of the approximate form (3.8)
of the particle distribution 4πr2n(r) (dashed curves) relative to the
full Thomas-Fermi profile (full curves), for a symmetric mixture of
fermions in the two cases γ = ±0.022.

3.3 Approximate form of the density profile for a symmetric
vapour at weak coupling

In the case N↑ = N↓ the shape of the total density profile n(r) = n↑(r)+n↓(r) at weak coupling
is well represented by a form which is suitable for the analytic study of the eigenmodes of the
gas that we report in Sect. 4 below. From Eq. (3.2) the Thomas-Fermi density profile is

n(r) = 2A−3/2
[

ǫF −
1

2
mω2

fr
2 −

f

2
n(r)

]3/2

‘ (3.7)

for r ≤ RF , where RF = (2ǫF /mω
2
f )

1/2 and ǫF = ǫ↑ = ǫ↓ is the chemical potential of the
mixture. At weak coupling the profile (3.7) can be approximated by

n(r) =
8N

π2R3
F

(1− r2/R2
F )

3/2θ(1− r2/R2
F ) , (3.8)

where ǫF and RF still are the true chemical potential and the Fermi radius in the interacting
mixture. The form (3.8) is adjusted to preserve normalization to N as well as the value of RF .

Figure 4 compares the approximate form (3.8) with the correct Thomas-Fermi form (3.7)
at γ = ±0.022 by plotting the function 4πr2n(r). The phase-space factor 4πr2 masks the small
differences that would be present in the two forms of n(r) near the centre of the trap. On the
other hand, preserving the correct value of the Fermi radius in the approximate form (3.8) is
crucial in view of the boundary conditions to be imposed in the determination of the eigenmodes
of the vapour.

As a final remark we notice that the profile in Eq. (3.8) has the same form as for an ideal
one-component Fermi gas [34]. This fact is crucial for the analytic treatment of the dynamics
of density fluctuations in a weakly coupled symmetric mixture, that we give in the next section.
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4 Dynamics of density fluctuations

The equations of motions (2.2), after linearization in the partial density fluctuations and adopt-
ing (i) the mean-field approximation (〈ρσ(r, t)ρσ′(r′, t)〉c = 0) and (ii) the local density approx-
imation for the kinetic stress tensor (Eq. (3.1), reduce to

m
∂2nσ(r)

∂t2
= ∇2

[

2

3
An2/3

σ (r)δnσ(r, t)
]

+ ∇ · {δnσ(r, t)∇[Vσ(r) + fnσ̄(r, t)] + fnσ(r)∇δnσ̄(r, t)} (4.1)

at resonance (i.e. for Vσ(r, t) = Vσ(r)). With the help of the equilibrium conditions (3.2), and
taking Fourier transforms with respect to the time variable, Eq. (4.1) can be written as

−mω2δnσ(r, ω) =
1

3
A
[

2n2/3
σ (r)∇2 +∇(n2/3

σ ) · ∇ − ∇2(n2/3
σ )

]

δnσ(r, ω)

+
{

[ǫσ̄ − Vσ̄(r)− An
2/3
σ̄ ]∇2 −∇[Vσ̄(r) + An

2/3
σ̄ ] · ∇

}

δnσ̄(r, ω) (4.2)

Evidently, Eq. (4.2) describes a two-by-two eigenvalue problem for the coupled partial density
fluctuations, which is to be solved numerically in the general case.

The problem is considerably simplified in the case of a symmetric mixture (m↑ = m↓,
N↑ = N↓ and V↑(r) = V↓(r), these conditions being well satisfied in the experiments of DeMarco
et al. [7]). In this case the dynamical equations (4.2) lead to separate equations of motion for the
total density fluctuations δn(r, ω) = δn↑(r, ω)+δn↓(r, ω) and for the concentration fluctuations
δM(r, ω) = δn↑(r, ω)− δn↓(r, ω). The eigenvalue equation for δn(r, ω) reads

−mω2δn(r, ω) = ∇ ·
(

2

3
A(n/2)2/3∇δn(r, ω)−

A

3
(∇(n/2)2/3)δn

+ (ǫF − V (r) −A(n/2)2/3)∇δn(r, ω)
)

. (4.3)

Similarly, the eigenvalue equation for δM(r, ω) is

−mω2δM(r, ω) = ∇ ·
(

2

3
A(n/2)2/3∇δM −

A

3
(∇(n/2)2/3)δM(r, ω)

− (ǫF − V (r) −A(n/2)2/3)∇δM(r, ω)
)

. (4.4)

Equations (4.3) and (4.4) can be solved analytically by the technique used in our earlier work on
the ideal one-component Fermi gas [24], if the form (3.8) is adopted for the equilibrium profile.
As already discussed in Sect. 3.3, Eq. (3.8) becomes accurate at small coupling. We shall
again impose that the solutions vanish continuously at the cloud boundary, as a consequence of
Fermi statistics giving a high cost in kinetic energy to rapid variations of the densities in space.
For both in-phase and out-of-phase motions of the two components, the frequency eigenvalues
depend on a parameter C given by

C = (3N)2/3(h̄ωf/ǫF )
2 (4.5)

This quantity is the square of the ratio of the ideal Fermi energy to the true Fermi energy and
hence, in the case of repulsive interactions where ǫF increases with the scattering length, is
limited from above by the inequality C < 1. All the mathematical details of the solution of
Eqs. (4.3) and (4.4) are given in Appendix A. Here we report only the main results.

4.1 Small oscillations of total density fluctuations

The eigenfunctions of the total density oscillations vanish at the Fermi radius r = RF provided
C < 3, in a way which depends on the parameter C and hence on the strength of the interactions
(see Appendix A.1 for their detailed expressions).
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The corresponding eigenfrequencies are labelled by the angular momentum number l and
by an integer n representing the number of internal nodes in the density fluctuation profile.
The dispersion relation is

(ωnl/ωf )
2 = l + 2n+

n

3
(3−C)(2n+ 2l + 1) (4.6)

The ideal Fermi gas limit corresponds to C = 1 and in this case Eq. (4.6) yields back our earlier
result [24]. More generally, the dispersion relation (4.6) reduces to that of the ideal Fermi gas
only for the surface modes (i.e. for n = 0). Instead, the frequencies of the modes with n > 0
are shifted by the interactions.

The above results are easily extended to evaluate the low-frequency modes in an axially
symmetric confinement (see e.g. [24]). As discussed in Sect. 2, damping of these modes will set
in when ωτ ≃ 1 for scattering against cold-atom impurities.

4.2 Small oscillations of concentration fluctuations

The eigenfunctions vanish at the Fermi radius only if C > 3/5 (see Appendix A.2 for the details).
This inequality marks the breakdown of the present approximation in the case of repulsive
interactions. Under this restriction the dispersion relation for concentration fluctuations having
n internal nodes is

(ωnl/ωf )
2 = (l + 2n)(2C − 1) +

n

3
(5C − 3)(2n+ 2l + 1) (4.7)

Of course, for both surface (n = 0) and bulk (n 6= 0) modes these frequencies differ from those
of density fluctuations in the ideal one-component Fermi gas.

Damping of these modes will arise not only from scattering against cold-atom impurities
but also from thermal excitations (see Sect. 2.1. A detailed discussion of the latter damping
for the spin dipole excitation has been given by Vichi and Stringari [31].

5 Summary and concluding remarks

In summary, the focus of this work has been on two-component mixtures of fermionic atoms in
dilute-vapour states and subject to spherical harmonic confinement at zero temperature. The
main motivation has come from the experiments of DeMarco et al. [6] on vapours of 40K atoms
magnetically trapped in two different hyperfine states.

The generalized hydrodynamic equations of the mixture have allowed us to discuss the
damping mechanisms from correlations between partial density fluctuations beyond mean field
terms. Because of momentum conservation in a pure two-component Fermi fluid the dissipation
processes in the hydrodynamic limit are associated with collisions between the two components
and these vanish quadratically with temperature because of Fermi statistics. We have then
discussed how a collisional regime may nevertheless arise for both global and relative density
fluctuations at very low temperature from collisions of the Fermi fluid against cold impurity
atoms. We have seen that the establishment of a collisional regime, in which the dynamical be-
haviour of the fluid reflects the quantal statistics, is not subject to especially severe restrictions
on the strength of the fermion-impurity scattering nor on the number of impurities.

We have then evaluated ground-state properties and small-amplitude excitations of such a
two-component Fermi fluid in a collisional regime. We have shown that, whereas the role of
the interactions in determining the equilibrium density profiles is still very weak in the cases
experimentally studied so far, a rich phase diagram will emerge as the coupling strength is
increased and/or redistribution of the components between magnetic states becomes allowed.
The relevant coupling strength depends in a simple manner on the number of fermions in the
trap and on the ratio of the scattering length to the harmonic-oscillator length. Finally, we have
shown how the problem of small-amplitude oscillations of both the total particle density and
the concentration density in a weakly coupled symmetric mixture is amenable to full analytic
solution in parallel with the analogous problem for an ideal Fermi gas.
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A Solution of equations (4.3) and (4.4)

We give in this Appendix the details of the analytic solution of the eigenvalue equations (4.3)
and (4.4) and the expressions for their eigenfunctions.

A.1 Total density fluctuations

From Eqs. (4.3) and (3.8) we find

[6(ω/ωf )
2 +C∇2

x(x
2)]δn(x, ω)

+(3− C)(1− x2)∇2
xδn(x, ω)− (3− 2C)∇(x2) · ∇δn(x, ω) = 0 (A.1)

where x = r/RF . The solutions of Eq. (A.1) have the form δn(x, ω) = xlF (x2)Y m
l (θ, φ),

because of spherical symmetry. Setting x2 = y, we determine the function F (y) from Eq. (A.1)
by means of the Fuchs method for solving an ordinary differential equation in a series form
around regular singular points [35]. This method sets

F (y) = (1− y)s
∞
∑

k=0

ak(1− y)k (A.2)

and yields s = C/(3− C) together with the recurrence relation for the coefficients ak,

2(s+ k + 1)(s+ k − 3b+ 2)
ak+1

ak
= −3b(ω/ωf )

2

−3(3b − 1) + l(2− 3b) + (s+ k)[2(s + k − 1) + 2l − 6b + 7] . (A.3)

Here, b = (3−C)−1. The eigenfunctions vanish at the boundary for C < 3.
The eigenfrequencies are obtained from Eq. (A.3) by asking that the solutions reduce to

polynomials of degree n+ s, i.e. an+1 = 0 for an integer n representing the number of internal
nodes of the density fluctuation profile. This yields the dispersion relation reported in Eq. (4.6)
of the main text.

A.2 Concentration fluctuations

From Eqs. (4.4) and (3.8) we get

[6(ω/ωf )
2 + C∇2

x(x
2)]δM(x, ω)

+(5C − 3)(1− x2)∇2
xδM(x, ω) + (3− 4C)∇(x2) · ∇δM(x, ω) = 0 (A.4)

We look for solutions having the form δM(x, ω) = xlG(x2)Y m
l (θ, φ) and set x2 = y to find the

differential equation obeyed by the function G(y),

2(5C − 3)y(1− y)
d2G(y)

dy2
+ [(5C − 3)(2l + 3)(1− y) + 2y(3− 4C)]

dG(y)

dy

+
(

3(ω/ωf )
2 + 3C + l(3− 4C)

)

G(y) = 0 (A.5)

Following again the Fuchs method we set

G(y) = (1− y)s
∞
∑

k=0

ak(1− y)k (A.6)

and from the indicial equation for Eq. (A.5) we find s = C/(5C − 3). Therefore, the solutions
will vanish at the boundary of the cloud only if C > 3/5.
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The coefficients of the series in Eq. (A.6) obey the recurrence relation

2(s+ k + 1)[(s+ k)(5C − 3)− 3 + 4C]
ak+1

ak
= −3(ω/ωf )

2

−[3C + l(3− 4C)] + (s+ k)[(5C − 3)(2s + 2k + 2l + 1) + 2(4C − 3)] . (A.7)

By asking again for polynomial solutions, we obtain the dispersion relation for concentration
fluctuations having n internal nodes as given in Eq. (4.7) of the main text.
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[13] P. Öhberg and S. Stenholm, Phys. Rev. A 57, 1272 (1998).

[14] H. Pu and N. P. Bigelow, Phys. Rev. Lett. 80, 1130 (1998).

[15] H. Pu and N. Bigelow, Phys. Rev. Lett. 80, 1134 (1998).

[16] D. A. Butts and D. S. Rokhsar, Phys. Rev. A 55, 4346 (1997).

[17] J. Schneider and H. Wallis, Phys. Rev. A 57, 1253 (1998).

[18] H. T. C. Stoof and M. Houbiers, cond-mat/9808171 (unpublished).

[19] M. Amoruso, A. Minguzzi, S. Stringari, M. P. Tosi, and L.Vichi, Eur. Phys. J. D 4, 261
(1998).

[20] M. Houbiers, R. Ferweda, H. T. C. Stoof, W. I. McAlexander, C. A. Sackett, and R. G.
Hulet, Phys. Rev. A 56, 4864 (1997).

[21] W. Zhang, C. A. Sackett, and R. G. Hulet, Phys. Rev. A 60, 504 (1999).

[22] M. A. Baranov and D. S. Petrov, cond-mat/9901108 (unpublished).

[23] G. Bruun and C. W. Clark, cond-mat/9906392 (unpublished).

[24] M. Amoruso, I. Meccoli, A. Minguzzi, and M. Tosi, cond-mat/9907370 and Eur. Phys. J.
D, in press (unpublished).

13

http://arxiv.org/abs/cond-mat/9808171
http://arxiv.org/abs/cond-mat/9901108
http://arxiv.org/abs/cond-mat/9906392
http://arxiv.org/abs/cond-mat/9907370


[25] A. Abrikosov and I. Khalatnikov, Rep. Progr. Phys. 22, 329 (1959).

[26] C. Caccamo, G. Pizzimenti, and M. Tosi, N. Cimento B 31, 329 (1976).

[27] A. Minguzzi, M. Chiofalo, and M. Tosi, Phys. Lett. A 236, 237 (1997).

[28] D. Kim, H. Praddaude, and B. Schwartz, Phys. Rev. Lett. 23, 419 (1969).

[29] G. Baym, Phys. Rev. 135, 1691 (1964).

[30] L. Kadanoff and G. Baym, Quantum Statistical Mechanics (Benjamin, New York, 1962).

[31] L. Vichi and S. Stringari, cond-mat/9905154 and Phys. Rev. A, in press (unpublished).
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