96 research outputs found

    Role of Organic Cation Transporter 1, OCT1 in the Pharmacokinetics and Toxicity of cis-Diammine(pyridine)chloroplatinum(II) and Oxaliplatin in Mice

    Get PDF
    PurposeThe goal of this study was to test the hypothesis that by controlling intracellular uptake, organic cation transporter 1, Oct1 is a key determinant of the disposition and toxicity of cis-diammine(pyridine)chloroplatinum(II)(CDPCP) and oxaliplatin.MethodsPharmacokinetics, tissue accumulation and toxicity of CDPCP and oxaliplatin were compared between Oct1-/- and wild-type mice.ResultsAfter intravenous administration, hepatic and intestinal accumulation of CDPCP was 2.7-fold and 3.9-fold greater in Oct1 wild-type mice (p < 0.001). Deletion of Oct1 resulted in a significantly decreased clearance (0.444 ± 0.0391 ml/min*kg versus 0.649 ± 0.0807 ml/min*kg in wild-type mice, p < 0.05) and volume distribution (1.90 ± 0.161 L/kg versus 3.37 ± 0.196 L/kg in wild-type mice, p < 0.001). Moreover, Oct1 deletion resulted in more severe off-target toxicities in CDPCP-treated mice. Histologic examination of the liver and measurements of liver function indicated that the level of hepatic toxicity was mild and reversible, but was more apparent in the wild-type mice. In contrast, the effect of Oct1 on the pharmacokinetics and toxicity of oxaliplatin in the mice was minimal.ConclusionsOur study suggests that Oct1 plays an important role in the pharmacokinetics, tissue distribution and toxicity of CDPCP, but not oxaliplatin

    Downregulation of organic cation transporters OCT1 (SLC22A1) and OCT3 (SLC22A3) in human hepatocellular carcinoma and their prognostic significance

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Organic cation transporters (OCT) are responsible for the uptake and intracellular inactivation of a broad spectrum of endogenous substrates and detoxification of xenobiotics and chemotherapeutics. The transporters became pharmaceutically interesting, because OCTs are determinants of the cytotoxicity of platin derivates and the transport activity has been shown to correlate with the sensitivity of tumors towards tyrosine kinase inhibitors. No data exist about the relevance of OCTs in hepatocellular carcinoma (HCC).</p> <p>Methods</p> <p>OCT1 (<it>SLC22A1</it>) and OCT3 (<it>SLC22A3</it>) mRNA expression was measured in primary human HCC and corresponding non neoplastic tumor surrounding tissue (TST) by real time PCR (n = 53). Protein expression was determined by western blot analysis and immunofluorescence. Data were correlated with the clinicopathological parameters of HCCs.</p> <p>Results</p> <p>Real time PCR showed a downregulation of <it>SLC22A1 </it>and <it>SLC22A3 </it>in HCC compared to TST (p ≤ 0.001). A low <it>SLC22A1 </it>expression was associated with a worse patient survival (p < 0.05). Downregulation was significantly associated with advanced HCC stages, indicated by a higher number of T3 tumors (p = 0.025) with a larger tumor diameter (p = 0.035), a worse differentiation (p = 0.001) and higher AFP-levels (p = 0.019). In accordance, <it>SLC22A1 </it>was less frequently downregulated in tumors with lower stages who underwent transarterial chemoembolization (p < 0.001) and liver transplantation (p = 0.001). Tumors with a low <it>SLC22A1 </it>expression (< median) showed a higher <it>SLC22A3 </it>expression compared to HCC with high <it>SLC22A1 </it>expression (p < 0.001). However, there was no significant difference in tumor characteristics according to the level of the <it>SLC22A3 </it>expression.</p> <p>In the western blot analysis we found a different protein expression pattern in tumor samples with a more diffuse staining in the immunofluorescence suggesting that especially OCT1 is not functional in advanced HCC.</p> <p>Conclusion</p> <p>The downregulation of OCT1 is associated with tumor progression and a worse patient survival.</p

    Cross-sectional imaging of individual layers and buried interfaces of graphene-based heterostructures and superlattices

    Full text link
    By stacking various two-dimensional (2D) atomic crystals [1] on top of each other, it is possible to create multilayer heterostructures and devices with designed electronic properties [2-5]. However, various adsorbates become trapped between layers during their assembly, and this not only affects the resulting quality but also prevents the formation of a true artificial layered crystal upheld by van der Waals interaction, creating instead a laminate glued together by contamination. Transmission electron microscopy (TEM) has shown that graphene and boron nitride monolayers, the two best characterized 2D crystals, are densely covered with hydrocarbons (even after thermal annealing in high vacuum) and exhibit only small clean patches suitable for atomic resolution imaging [6-10]. This observation seems detrimental for any realistic prospect of creating van der Waals materials and heterostructures with atomically sharp interfaces. Here we employ cross sectional TEM to take a side view of several graphene-boron nitride heterostructures. We find that the trapped hydrocarbons segregate into isolated pockets, leaving the interfaces atomically clean. Moreover, we observe a clear correlation between interface roughness and the electronic quality of encapsulated graphene. This work proves the concept of heterostructures assembled with atomic layer precision and provides their first TEM images

    Food Sharing across Borders

    Get PDF
    Evolutionary models consider hunting and food sharing to be milestones that paved the way from primate to human societies. Because fossil evidence is scarce, hominoid primates serve as referential models to assess our common ancestors’ capacity in terms of communal use of resources, food sharing, and other forms of cooperation. Whereas chimpanzees form male-male bonds exhibiting resource-defense polygyny with intolerance and aggression toward nonresidents, bonobos form male-female and female-female bonds resulting in relaxed relations with neighboring groups. Here we report the first known case of meat sharing between members of two bonobo communities, revealing a new dimension of social tolerance in this species. This observation testifies to the behavioral plasticity that exists in the two Pan species and contributes to scenarios concerning the traits of the last common ancestor of Pan and Homo. It also contributes to the discussion of physiological triggers of in-group/out-group behavior and allows reconsideration of the emergence of social norms in prehuman societies

    Paleodistributions and Comparative Molecular Phylogeography of Leafcutter Ants (Atta spp.) Provide New Insight into the Origins of Amazonian Diversity

    Get PDF
    The evolutionary basis for high species diversity in tropical regions of the world remains unresolved. Much research has focused on the biogeography of speciation in the Amazon Basin, which harbors the greatest diversity of terrestrial life. The leading hypotheses on allopatric diversification of Amazonian taxa are the Pleistocene refugia, marine incursion, and riverine barrier hypotheses. Recent advances in the fields of phylogeography and species-distribution modeling permit a modern re-evaluation of these hypotheses. Our approach combines comparative, molecular phylogeographic analyses using mitochondrial DNA sequence data with paleodistribution modeling of species ranges at the last glacial maximum (LGM) to test these hypotheses for three co-distributed species of leafcutter ants (Atta spp.). The cumulative results of all tests reject every prediction of the riverine barrier hypothesis, but are unable to reject several predictions of the Pleistocene refugia and marine incursion hypotheses. Coalescent dating analyses suggest that population structure formed recently (Pleistocene-Pliocene), but are unable to reject the possibility that Miocene events may be responsible for structuring populations in two of the three species examined. The available data therefore suggest that either marine incursions in the Miocene or climate changes during the Pleistocene—or both—have shaped the population structure of the three species examined. Our results also reconceptualize the traditional Pleistocene refugia hypothesis, and offer a novel framework for future research into the area

    Assessment and validation of a suite of reverse transcription-quantitative PCR reference genes for analyses of density-dependent behavioural plasticity in the Australian plague locust

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Australian plague locust, <it>Chortoicetes terminifera</it>, is among the most promising species to unravel the suites of genes underling the density-dependent shift from shy and cryptic solitarious behaviour to the highly active and aggregating gregarious behaviour that is characteristic of locusts. This is because it lacks many of the major phenotypic changes in colour and morphology that accompany phase change in other locust species. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) is the most sensitive method available for determining changes in gene expression. However, to accurately monitor the expression of target genes, it is essential to select an appropriate normalization strategy to control for non-specific variation between samples. Here we identify eight potential reference genes and examine their expression stability at different rearing density treatments in neural tissue of the Australian plague locust.</p> <p>Results</p> <p>Taking advantage of the new orthologous DNA sequences available in locusts, we developed primers for genes encoding 18SrRNA, ribosomal protein L32 (RpL32), armadillo (Arm), actin 5C (Actin), succinate dehydrogenase (SDHa), glyceraldehyde-3P-dehydrogenase (GAPDH), elongation factor 1 alpha (EF1a) and annexin IX (AnnIX). The relative transcription levels of these eight genes were then analyzed in three treatment groups differing in rearing density (isolated, short- and long-term crowded), each made up of five pools of four neural tissue samples from 5<sup>th </sup>instar nymphs. SDHa and GAPDH, which are both involved in metabolic pathways, were identified as the least stable in expression levels, challenging their usefulness in normalization. Based on calculations performed with the geNorm and NormFinder programs, the best combination of two genes for normalization of gene expression data following crowding in the Australian plague locust was EF1a and Arm. We applied their use to studying a target gene that encodes a Ca<sup>2+ </sup>binding glycoprotein, <it>SPARC</it>, which was previously found to be up-regulated in brains of gregarious desert locusts, <it>Schistocerca gregaria</it>. Interestingly, expression of this gene did not vary with rearing density in the same way in brains of the two locust species. Unlike <it>S. gregaria</it>, there was no effect of any crowding treatment in the Australian plague locust.</p> <p>Conclusion</p> <p>Arm and EF1a is the most stably expressed combination of two reference genes of the eight examined for reliable normalization of RT-qPCR assays studying density-dependent behavioural change in the Australian plague locust. Such normalization allowed us to show that <it>C. terminifera </it>crowding did not change the neuronal expression of the <it>SPARC </it>gene, a gregarious phase-specific gene identified in brains of the desert locust, <it>S. gregaria</it>. Such comparative results on density-dependent gene regulation provide insights into the evolution of gregarious behaviour and mass migration of locusts. The eight identified genes we evaluated are also candidates as normalization genes for use in experiments involving other Oedipodinae species, but the rank order of gene stability must necessarily be determined on a case-by-case basis.</p

    The Marine Microbial Eukaryote Transcriptome Sequencing Project (MMETSP): illuminating the functional diversity of eukaryotic life in the oceans through transcriptome sequencing.

    Get PDF
    Microbial ecology is plagued by problems of an abstract nature. Cell sizes are so small and population sizes so large that both are virtually incomprehensible. Niches are so far from our everyday experience as to make their very definition elusive. Organisms that may be abundant and critical to our survival are little understood, seldom described and/or cultured, and sometimes yet to be even seen. One way to confront these problems is to use data of an even more abstract nature: molecular sequence data. Massive environmental nucleic acid sequencing, such as metagenomics or metatranscriptomics, promises functional analysis of microbial communities as a whole, without prior knowledge of which organisms are in the environment or exactly how they are interacting. But sequence-based ecological studies nearly always use a comparative approach, and that requires relevant reference sequences, which are an extremely limited resource when it comes to microbial eukaryotes. In practice, this means sequence databases need to be populated with enormous quantities of data for which we have some certainties about the source. Most important is the taxonomic identity of the organism from which a sequence is derived and as much functional identification of the encoded proteins as possible. In an ideal world, such information would be available as a large set of complete, well curated, and annotated genomes for all the major organisms from the environment in question. Reality substantially diverges from this ideal, but at least for bacterial molecular ecology, there is a database consisting of thousands of complete genomes from a wide range of taxa, supplemented by a phylogeny-driven approach to diversifying genomics [2]. For eukaryotes, the number of available genomes is far, far fewer, and we have relied much more heavily on random growth of sequence databases, raising the question as to whether this is fit for purpose

    Cytoskeletal protein kinases: titin and its relations in mechanosensing

    Get PDF
    Titin, the giant elastic ruler protein of striated muscle sarcomeres, contains a catalytic kinase domain related to a family of intrasterically regulated protein kinases. The most extensively studied member of this branch of the human kinome is the Ca2+–calmodulin (CaM)-regulated myosin light-chain kinases (MLCK). However, not all kinases of the MLCK branch are functional MLCKs, and about half lack a CaM binding site in their C-terminal autoinhibitory tail (AI). A unifying feature is their association with the cytoskeleton, mostly via actin and myosin filaments. Titin kinase, similar to its invertebrate analogue twitchin kinase and likely other “MLCKs”, is not Ca2+–calmodulin-activated. Recently, local protein unfolding of the C-terminal AI has emerged as a common mechanism in the activation of CaM kinases. Single-molecule data suggested that opening of the TK active site could also be achieved by mechanical unfolding of the AI. Mechanical modulation of catalytic activity might thus allow cytoskeletal signalling proteins to act as mechanosensors, creating feedback mechanisms between cytoskeletal tension and tension generation or cellular remodelling. Similar to other MLCK-like kinases like DRAK2 and DAPK1, TK is linked to protein turnover regulation via the autophagy/lysosomal system, suggesting the MLCK-like kinases have common functions beyond contraction regulation
    corecore