219 research outputs found

    Cumulate causes for the low contents of sulfide-loving elements in the continental crust

    Get PDF
    Despite the economic importance of chalcophile (sulfide-loving) and siderophile (metal-loving) elements (CSEs), it is unclear how they become enriched or depleted in the continental crust, compared with the oceanic crust. This is due in part to our limited understanding of the partitioning behaviour of the CSEs. Here I compile compositional data for mid-ocean ridge basalts and subduction-related volcanic rocks. I show that the mantle-derived melts that contribute to oceanic and continental crust formation rarely avoid sulfide saturation during cooling in the crust and, on average, subduction-zone magmas fractionate sulfide at the base of the continental crust prior to ascent. Differentiation of mantle-derived melts enriches lower crustal sulfide- and silicate-bearing cumulates in some CSEs compared with the upper crust. This storage predisposes the cumulate-hosted compatible CSEs (such as Cu and Au) to be recycled back into the mantle during subduction and delamination, resulting in their low contents in the bulk continental crust and potentially contributing to the scarcity of ore deposits in the upper continental crust. By contrast, differentiation causes the upper oceanic and continental crust to become enriched in incompatible CSEs (such as W) compared with the lower oceanic and continental crust. Consequently, incompatible CSEs are predisposed to become enriched in subduction-zone magmas that contribute to continental crust formation and are less susceptible to removal from the continental crust via delamination compared with the compatible CSEs

    ‘Some anti-malarials are too strong for your body, they will harm you.’ Socio-cultural factors influencing pregnant women’s adherence to anti-malarial treatment in rural Gambia

    Get PDF
    Background Despite declining prevalence of malaria in The Gambia, non-adherence to anti-malarial treatment still remains a challenge to control efforts. There is limited evidence on the socio-cultural factors that influence adherence to anti-malarial treatment in pregnancy. This study explored perceptions of malaria in pregnancy and their influence on adherence to anti-malarial treatment in a rural area of The Gambia. Methods An exploratory ethnographic study was conducted ancillary to a cluster-randomized trial on scheduled screening and treatment of malaria in pregnancy at village level in the Upper River Region of The Gambia from June to August 2014. Qualitative data were collected through interviewing and participant observation. Analysis was concurrent to data collection and carried out using NVivo 10. Results Although women had good bio-medical knowledge of malaria in pregnancy, adherence to anti-malarial treatment was generally perceived to be low. Pregnant women were perceived to discontinue the provided anti-malarial treatment after one or 2 days mainly due to non-recognition of symptoms, perceived ineffectiveness of the anti-malarial treatment, the perceived risks of medication and advice received from mothers-in-law. Conclusion Improving women’s knowledge of malaria in pregnancy is not sufficient to assure adherence to anti-malarial treatment. Addressing structural barriers such as unclear health workers’ messages about medication dosage, illness recognition, side effects of the medication and the integration of relatives, especially the mothers-in-law, in community-based programmes are additionally required

    Mutation increasing β-carotene concentrations does not adversely affect concentrations of essential mineral elements in pepper fruit

    Get PDF
    <div><p>Vitamin and mineral deficiencies are prevalent in human populations throughout the world. Vitamin A deficiency affects hundreds of millions of pre-school age children in low income countries. Fruits of pepper (<i>Capsicum annuum</i> L.) can be a major dietary source of precursors to Vitamin A biosynthesis, such as β-carotene. Recently, pepper breeding programs have introduced the orange-fruited (<i>of</i>) trait of the mutant variety Oranzheva kapiya, which is associated with high fruit β-carotene concentrations, to the mutant variety Albena. In this manuscript, concentrations of β-carotene and mineral elements (magnesium, phosphorus, sulphur, potassium, zinc, calcium, manganese, iron and copper) were compared in fruit from P31, a red-fruited genotype derived from the variety Albena, and M38, a genotype developed by transferring the orange-fruited mutation (<i>of</i>) into Albena. It was observed that fruit from M38 plants had greater β-carotene concentration at both commercial and botanical maturity (4.9 and 52.7 mg / kg fresh weight, respectively) than fruit from P31 plants (2.3 and 30.1 mg / kg fresh weight, respectively). The mutation producing high β-carotene concentrations in pepper fruits had no detrimental effect on the concentrations of mineral elements required for human nutrition.</p></div

    saeRS and sarA Act Synergistically to Repress Protease Production and Promote Biofilm Formation in Staphylococcus aureus

    Get PDF
    Mutation of the staphylococcal accessory regulator (sarA) limits biofilm formation in diverse strains of Staphylococcus aureus, but there are exceptions. One of these is the commonly studied strain Newman. This strain has two defects of potential relevance, the first being mutations that preclude anchoring of the fibronectin-binding proteins FnbA and FnbB to the cell wall, and the second being a point mutation in saeS that results in constitutive activation of the saePQRS regulatory system. We repaired these defects to determine whether either plays a role in biofilm formation and, if so, whether this could account for the reduced impact of sarA in Newman. Restoration of surface-anchored FnbA enhanced biofilm formation, but mutation of sarA in this fnbA-positive strain increased rather than decreased biofilm formation. Mutation of sarA in an saeS-repaired derivative of Newman (P18L) or a Newman saeRS mutant (ΔsaeRS) resulted in a biofilm-deficient phenotype like that observed in clinical isolates, even in the absence of surface-anchored FnbA. These phenotypes were correlated with increased production of extracellular proteases and decreased accumulation of FnbA and/or Spa in the P18L and ΔsaeRS sarA mutants by comparison to the Newman sarA mutant. The reduced accumulation of Spa was reversed by mutation of the gene encoding aureolysin, while the reduced accumulation of FnbA was reversed by mutation of the sspABC operon. These results demonstrate that saeRS and sarA act synergistically to repress the production of extracellular proteases that would otherwise limit accumulation of critical proteins that contribute to biofilm formation, with constitutive activation of saeRS limiting protease production, even in a sarA mutant, to a degree that can be correlated with increased enhanced capacity to form a biofilm. Although it remains unclear whether these effects are mediated directly or indirectly, studies done with an sspA::lux reporter suggest they are mediated at a transcriptional level

    The impacts of landscape structure on the winter movements and habitat selection of female red deer

    Get PDF
    An area of research that has recently gained more attention is to understand how species respond to environmental change such as the landscape structure and fragmentation. Movement is crucial to select habitats but the landscape structure influences the movement patterns of animals. Characterising the movement characteristics, utilisation distribution (UD) and habitat selection of a single species in different landscapes can provide important insights into species response to changes in the landscape. We investigate these three fields in female red deer (Cervus elaphus) in southern Sweden, in order to understand how landscape structure influences their movement and feeding patterns. Movements are compared between two regions, one dominated by a fragmented agriculture-forest mosaic and the other by managed homogenous forest. Red deer in the agriculture-dominated landscape had larger UDs compared to those in the forest-dominated area, moved larger distances between feeding and resting and left cover later in the day but used a similar duration for their movements, suggesting faster travelling speeds between resting and feeding locations. The habitat selection patterns of red deer indicate a trade-off between forage and cover, selecting for habitats that provide shelter during the day and forage by night. However, the level of trade-off, mediated through movement and space use patterns, is influenced by the landscape structure. Our approach provides further understanding of the link between individual animal space use and changing landscapes and can be applied to many species able to carry tracking devices

    Boreal forest floor greenhouse gas emissions across a Pleurozium schreberi-dominated, wildfire-disturbed chronosequence

    Get PDF
    The boreal forest is a globally critical biome for carbon cycling. Its forests are shaped by wildfire events that affect ecosystem properties and climate feedbacks including greenhouse gas (GHG) emissions. Improved understanding of boreal forest floor processes is needed to predict the impacts of anticipated increases in fire frequency, severity, and extent. In this study, we examined relationships between time since last wildfire (TSF), forest floor soil properties, and GHG emissions (CO2, CH4, N2O) along a Pleurozium schreberi-dominated chronosequence in mid- to late succession located in northern Sweden. Over three growing seasons in 2012–2014, GHG flux measurements were made in situ and samples were collected for laboratory analyses. We predicted that P. schreberi-covered forest floor GHG fluxes would be related to distinct trends in the soil properties and microbial community along the wildfire chronosequence. Although we found no overall effect of TSF on GHG emissions, there was evidence that soil C/N, one of the few properties to show a trend with time, was inversely linked to ecosystem respiration. We also found that local microclimatic conditions and site-dependent properties were better predictors of GHG fluxes than TSF. This shows that site-dependent co-variables (that is, forest floor climate and plant-soil properties) need to be considered as well as TSF to predict GHG emissions as wildfires become more frequent, extensive and severe

    Sexual Dimorphism in Healthy Aging and Mild Cognitive Impairment: A DTI Study

    Get PDF
    Previous PET and MRI studies have indicated that the degree to which pathology translates into clinical symptoms is strongly dependent on sex with women more likely to express pathology as a diagnosis of AD, whereas men are more resistant to clinical symptoms in the face of the same degree of pathology. Here we use DTI to investigate the difference between male and female white matter tracts in healthy older participants (24 women, 16 men) and participants with mild cognitive impairment (21 women, 12 men). Differences between control and MCI participants were found in fractional anisotropy (FA), radial diffusion (DR), axial diffusion (DA) and mean diffusion (MD). A significant main effect of sex was also reported for FA, MD and DR indices, with male control and male MCI participants having significantly more microstructural damage than their female counterparts. There was no sex by diagnosis interaction. Male MCIs also had significantly less normalised grey matter (GM) volume than female MCIs. However, in terms of absolute brain volume, male controls had significantly more brain volume than female controls. Normalised GM and WM volumes were found to decrease significantly with age with no age by sex interaction. Overall, these data suggest that the same degree of cognitive impairment is associated with greater structural damage in men compared with women

    Evolutionary diversity and developmental regulation of X-chromosome inactivation

    Get PDF
    X-chromosome inactivation (XCI) results in the transcriptional silencing of one X-chromosome in females to attain gene dosage parity between XX female and XY male mammals. Mammals appear to have developed rather diverse strategies to initiate XCI in early development. In placental mammals XCI depends on the regulatory noncoding RNA X-inactive specific transcript (Xist), which is absent in marsupials and monotremes. Surprisingly, even placental mammals show differences in the initiation of XCI in terms of Xist regulation and the timing to acquire dosage compensation. Despite this, all placental mammals achieve chromosome-wide gene silencing at some point in development, and this is maintained by epigenetic marks such as chromatin modifications and DNA methylation. In this review, we will summarise recent findings concerning the events that occur downstream of Xist RNA coating of the inactive X-chromosome (Xi) to ensure its heterochromatinization and the maintenance of the inactive state in the mouse and highlight similarities and differences between mammals

    Pharmacological Fingerprints of Contextual Uncertainty

    Get PDF
    Successful interaction with the environment requires flexible updating of our beliefs about the world. By estimating the likelihood of future events, it is possible to prepare appropriate actions in advance and execute fast, accurate motor responses. According to theoretical proposals, agents track the variability arising from changing environments by computing various forms of uncertainty. Several neuromodulators have been linked to uncertainty signalling, but comprehensive empirical characterisation of their relative contributions to perceptual belief updating, and to the selection of motor responses, is lacking. Here we assess the roles of noradrenaline, acetylcholine, and dopamine within a single, unified computational framework of uncertainty. Using pharmacological interventions in a sample of 128 healthy human volunteers and a hierarchical Bayesian learning model, we characterise the influences of noradrenergic, cholinergic, and dopaminergic receptor antagonism on individual computations of uncertainty during a probabilistic serial reaction time task. We propose that noradrenaline influences learning of uncertain events arising from unexpected changes in the environment. In contrast, acetylcholine balances attribution of uncertainty to chance fluctuations within an environmental context, defined by a stable set of probabilistic associations, or to gross environmental violations following a contextual switch. Dopamine supports the use of uncertainty representations to engender fast, adaptive responses. \ua9 2016 Marshall et al
    corecore