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Abstract

Vitamin and mineral deficiencies are prevalent in human populations throughout the world.

Vitamin A deficiency affects hundreds of millions of pre-school age children in low income

countries. Fruits of pepper (Capsicum annuum L.) can be a major dietary source of precur-

sors to Vitamin A biosynthesis, such as β-carotene. Recently, pepper breeding programs

have introduced the orange-fruited (of) trait of the mutant variety Oranzheva kapiya, which

is associated with high fruit β-carotene concentrations, to the mutant variety Albena. In this

manuscript, concentrations of β-carotene and mineral elements (magnesium, phosphorus,

sulphur, potassium, zinc, calcium, manganese, iron and copper) were compared in fruit

from P31, a red-fruited genotype derived from the variety Albena, and M38, a genotype

developed by transferring the orange-fruited mutation (of) into Albena. It was observed that

fruit from M38 plants had greater β-carotene concentration at both commercial and botanical

maturity (4.9 and 52.7 mg / kg fresh weight, respectively) than fruit from P31 plants (2.3 and

30.1 mg / kg fresh weight, respectively). The mutation producing high β-carotene concentra-

tions in pepper fruits had no detrimental effect on the concentrations of mineral elements

required for human nutrition.

Introduction

Fruits and vegetables are an important dietary source of many of the vitamins and minerals

required by humans [1–4]. Plant carotenoids, such as β-carotene, are precursors of Vitamin A

biosynthesis and provide a major source of Vitamin A to human diets [5–6]. It is estimated

that Vitamin A deficiency affects up to 190 million pre-school age children and 19 million

pregnant women in countries with a Gross Domestic Product (GDP) < 15 000 $ per capita in
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2005 [7]. Vitamin A deficiency is associated with increased risk of ocular disorders, degenera-

tive diseases, respiratory, urinary and intestinal disorders, cardiovascular disease, and certain

types of cancer [7–9]. Dietary intake of carotenoids can mitigate against these risks [6]. In

addition, β-carotene improves the bioavailability of zinc and iron, which are also often lacking

in human diets [10–11]. Thus, increasing β-carotene in food is of great importance.

Pepper fruits can often be a major dietary source of carotenoids, especially β-carotene [12–

14]. There is considerable natural variation in β-carotene concentrations in pepper fruit [15–

21]. In addition, induced mutations have increased β-carotene concentrations in pepper fruit

[22–27]. For example, the orange-fruited variety Oranzheva kapiya, whose fruit has a high β-

carotene concentration, was developed after subjecting dry seeds of a red-fruited variety,

Pazardzhishka kapiya 794, to X-ray mutagenesis [22, 28]. The mutation conferring the orange-

fruited (of) trait of Oranzheva kapiya appears to be in the 3’-terminal region of the CrtZ gene,

which encodes an enzyme that converts β-carotene to β-cryptoxanthin [24]. Recently, this

mutation was introduced into the variety Albena, which possesses the anthocyanin-free (al)
mutation, has early and high yield, attractive fruit and better flavour [29], and a promising

genotype (M38) with excellent agronomic characteristics and fruit quality has been developed

[30]. The M38 genotype was registered in the working collection at the Maritsa Vegetable

Crops Research Institute. The fruit from lines with orange fruit arising from the same breeding

program as M38 have high β-carotene concentrations [24, 31]. However, it is important that

the mutation that has resulted in high β-carotene concentrations has not affected other nutri-

tional attributes of the fruit. Thus, the aim of this study was to check that the induced muta-

tions producing high β-carotene concentrations in the fruits of M38 plants had no unforeseen

effects on the concentrations of essential mineral elements in these fruit.

Materials and methods

Plant genotypes

The sweet pepper (Capsicum annuum L.) genotypes analysed in this study were P31, a red-

fruited genotype derived from the variety Albena [29], and M38 (Okal38) (Fig 1), an orange-

fruited genotype obtained by transferring the orange-fruited mutation (of) from the variety

Oranzheva kapiya into Albena [28] and advancing to M8 isogenic lines. Both P31 and M38 are

early ripening, anthocyanin-free (al), have high yield potential, and attractive fruit with an

excellent flavour [25].

Growth conditions and harvested portions

Ten plants of each genotype were grown in the field at the Maritsa Vegetable Crops Research

Institute, Plovdiv, Bulgaria. The plants were grown in furrows following conventional practice for

mid-early pepper production in this region. For mineral analyses, six ripe fruit from each plant

were collected as green fruit at commercial maturity. The shape (length and diameter), thickness

of pericarp, and fresh weight (FW) of each fruit was determined. Fruit were dried at 105˚C for

one hour then at 60˚C to a constant weight to determine their dry weight (DW). For analyses of

β-carotene, nineteen green fruit from P31 and nine green fruit from M38 were analysed at com-

mercial maturity, and fifteen red fruit from P31 and ten orange fruit from M38 were analysed at

botanical maturity. Fruit of each maturity x genotype were of uniform size and colour.

Mineral analysis

Dried fruit were milled to a powder using a ball-mill. Accurately weighed subsamples of pow-

dered fruit (approximately 50 mg DW) were digested with 3.0 mL concentrated nitric acid and

Concentrations of β-carotene and mineral elements in pepper mutant
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1.0 mL of 30% (v/v) hydrogen peroxide in closed vessels using a microwave digester (MARS

Xpress; CEM Microwave Technology, Buckingham, UK) as described by Subramanian et al. [32].

Each digested subsample was then diluted to 50 mL with sterile MilliQ water (18.2 MO cm) prior

to elemental analyses. The potassium (K), calcium (Ca), magnesium (Mg), phosphorus (P), sul-

phur (S), iron (Fe), manganese (Mn), zinc (Zn) and copper (Cu) content of digested subsamples

were determined by inductively-coupled mass spectrometry (ICPMS; ELAN DRCe; PerkinElmer,

Waltham, MA, USA) using argon as the carrier gas [32]. Blank digestions were performed to

determine background concentrations of mineral elements, and the National Institute of Stan-

dards and Technology (NIST, Gaithersburg, MD, USA) tomato leaf standard (Reference Number

1573a) was analysed every 20 samples as an analytical control. All data were scaled to the certified

composition of the tomato leaf standard (27.0 mg K / g DW, 50.5 mg Ca / g DW, 12.0 mg Mg / g

DW, 2.16 mg P / g DW, 9.60 mg S / g DW, 368 μg Fe / g DW, 246 μg Mn / g DW, 30.9 μg Zn / g

DW, 4.7 μg Cu / g DW). Apparent recoveries of elements from the tomato leaf standard were: K

88%, Ca 103%, Mg 129%, P 77%, S 78%, Fe 149%, Mn 122%, Zn 72%, Cu 85%.

Beta-carotene analysis

Biochemical analyses were performed on the day on which fruit were collected. Carotenoids

were extracted in duplicate from 5 g FW of green fruit or 2 g FW of red or orange fruit into

acetone: ethanol: hexane (1: 1: 2) with MgCO3 as neutralizing agent, sonicated for 1 min,

and centrifuged at 3000 rpm for 3 min, as described by Periago et al. [33]. The pellet was

reextracted following the same procedure until the supernatant was colorless. The extract

was dried using a rotary vacuum evaporator (Büchi Labortechnik, Flawil, Switzerland) at

30˚C at 210 mbar increasing gradually to 1400 mbar. The extract was redissolved in 1 mL

acetone containing 0.1% butylhydroxytoluene (BHT) as antioxidant, and then filtered

through 0.45 μm Nylon membrane (EMD Millipore, Billerica, MA, USA) into dark vials.

Samples were extracted and stored in the dark under nitrogen. Most of the mature fruit

samples were diluted 2–3 fold before analysis of β-carotene concentration.

Fig 1. Pepper genotypes with fruit in technical and botanical maturity phase. a) M38 with orange colour

of mature fruit; b) P31 with red colour of mature fruit.

doi:10.1371/journal.pone.0172180.g001
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Beta-carotene content was determined on redissolved extracts using high performance liq-

uid chromatography (HPLC). A 50 μl sample was injected into an Agilent Model 1200 HPLC

(Agilent Technologies, Santa Clara, CA, USA), equipped with a quaternary pump and two

detectors (a diode array detector set at 450 nm and a refractometer). Separation was performed

for 22 min per analysis on a ZORBAX Eclipse XDB-C18 column (150 x 4.6 mm ID; Agilent

Technologies) at flow rate of 0.8 ml /min. The column temperature was maintained at 20˚C

during the separation process. The mobile phase consisted of: A (acetonitrile and 0.1% BHT),

B (acetone and 0.1% BHT), and C (water). The gradient used to separate β-carotene, targeted

in the present study, and lycopene was: in 1 min 60% А and 40% С, in 10 min 35% В and 12%

С, in 12 min 100% В.

Compounds were identified by their retention time and absorption spectra compared to

those of known standards (CaroteNature, Ostermundigen, Switzerland). Data analysis was

performed using ChemStation software (Agilent Technologies). All chemicals were HPLC

grade and obtained from Merck (Darmstadt, Germany).

Six point calibration curves (n = 3 replicates) for both lycopene and β-carotene were linear

in the working range of 0.04–5 μg / mL (correlation coefficients > 0.99). The limits of detec-

tion (LOD), defined as the concentration of the carotenoid resulting in a peak height three

fold greater than the baseline noise, were 0.0171 μg / mL for lycopene and 0.0117 μg / mL for

β-carotene. The limits of quantification (LOQ), set at 2.5 fold the LOD [34], were 0.0428 μg /

mL for lycopene and 0.0293 μg / mL for β-carotene. The average short-term reproducibility

(the same sample determined within a day), calculated as the coefficient of variation, was 6.0%.

The average long-term reproducibility (the same sample determined 10 times over the follow-

ing two days) was 7.4%. To determine the recovery of added analytes, samples were spiked

with concentrations of each carotenoid from 0.07 to 0.5 μg / mL. The recoveries of the caroten-

oids were 97% for lycopene and 95% for β-carotene.

Statistical analysis

Data were expressed as mean ± standard error of the mean (SE) from n determinations, unless

otherwise specified. Student’s t-test was used to determine the significance of the difference

between two sets of data. Statistical calculations were performed using Microsoft Office Excel

(Microsoft Corporation, Redmond, WA, USA) or SPSS Version 17.0 (SPSS, Chicago, IL, USA).

Results

Fruits from P31 and M38 plants differed in their morphological characteristics (Table 1).

Fruits from P31 plants were longer (p = 0.142), wider (p< 0.001) and heavier (p< 0.001 for

FW) than those from M38 plants and had a thicker pericarp (p< 0.0028; Table 1).

However, fruits from P31 and M38 plants had different dry weights (p = 0.651; Table 1).

The β-carotene concentration of green fruit from M38 plants was greater than that of green

fruit from P31 plants at commercial maturity, and the β-carotene concentration of orange

fruit from M38 plants was greater than that of the red fruit from P31 plants at botanical matu-

rity (Table 1).

At commercial maturity the average β-carotene concentration in green fruit of M38 was 4.9

mg / kg FW and that of P31 was 2.3 mg / kg FW. The average β-carotene concentration in

orange fruit from M38 plants was 52.7 mg / kg FW and that in the red fruit from P31 plants

was 30.1 mg / kg FW.

Fruits from P31 and M38 plants also differed in their mineral composition (Table 2).

To avoid the vagaries of hydration, the concentrations of mineral elements in fruits from

P31 and M38 plants were compared on a DW basis (cf. [11]). Although the concentrations of

Concentrations of β-carotene and mineral elements in pepper mutant
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magnesium (Mg), potassium (K), zinc (Zn), calcium (Ca), manganese (Mn) and copper (Cu)

were similar in fruit from P31 and M38 plants, the sulphur (S), phosphorus (P) and iron (Fe)

concentrations in fruit from M38 plants were significantly (P< 0.01) greater than those in

fruit from P31 plants.

Discussion

Morphological characteristics are consistent with previous observations that the variety Albena

had longer fruits with more pericarp than lines with orange fruit arising from the same breed-

ing program as M38 used in this study [35]. The compared accessions have similar dry weight.

The greatest difference between P31 with red fruits and M38 with orange fruits is that the β-

carotene concentration of orange fruit exceeds significantly the β-carotene of red fruits. Both

P31 and M38 belong to the “kapiya” type of sweet pepper that is consumed as green fruit and,

because they ripen early, they are suitable for early market production. The values of β-caro-

tene concentration in green fruit (M38 outperforms that of P31) compare favourably with

green and red peppers available in the US, which contain 2.08 mg / kg FW and 16.24 mg / kg

FW β-carotene, respectively [36](USDA 2012) and yellow, green and red peppers available in

the UK, which contain 1.85 mg / kg FW, 2.65 mg / kg FW and 38.4 mg / kg FW β-carotene,

respectively [37].

The US Recommended Dietary Allowance (RDA) for men and women is 900 and 700 μg

retinol activity equivalents (RAE) / day, respectively [38]. The UK Reference Nutrient Intake

(RNI) values for men and women are slightly lower, at 700 and 600 μg RAE / day, respectively

[39]. Assuming that 12 μg β-carotene is equivalent to 1 μg RAE, then the US RDA for men and

women could be provided by 10.8 mg β-carotene and 8.4 mg β-carotene, respectively. Thus,

Table 1. Morphological characteristics and ß-carotene concentrations of fruit from P31 and M38 plants. Data are expressed as mean ± standard

error of the mean of n fruit.

Fruit Character P31 M38

Length (cm) 11.43 ± 0.23 (n = 60) 10.97 ± 0.21 (n = 59)

Diameter (cm) 3.48 ± 0.09 (n = 60) 2.74 ± 0.07 (n = 59)

Fresh Weight (g) 44.50 ± 1.50 (n = 60) 33.68 ± 1.34 (n = 59)

Pericarp Thickness (mm) 3.40 ± 0.12 (n = 60) 2.98 ± 0.10 (n = 59)

Dry Weight / Fresh Weight (%) 9.89 ± 0.21 (n = 60) 11.33 ± 0.23 (n = 59)

Beta-carotene Concentration (at commercial maturity) (mg / kg FW) 2.3 ± 0.4 (n = 19) 4.9 ± 0.9 (n = 9)

Beta-carotene Concentration (at botanical maturity) (mg / kg FW) 30.1 ± 2.7 (n = 15) 52.7 ± 4.7 (n = 10)

doi:10.1371/journal.pone.0172180.t001

Table 2. Concentrations of mineral elements in the pericarp dry matter of pepper fruit from P31 and M38 plants. Data are mean ± standard error of

the mean of 60 fruit from P31 plants and 59 fruit from M38 plants.

Element P31 M38

Magnesium (mg / g DW) 1.50 ± 0.029 1.53 ± 0.021

Phosphorus (mg / g DW) 3.08 ± 0.044 3.25 ± 0.043

Sulphur (mg / g DW) 1.67 ± 0.040 1.97 ± 0.035

Potassium (mg / g DW) 28.8 ± 0.48 27.8 ± 0.41

Zinc (μg / g DW) 25.0 ± 0.67 26.6 ± 0.57

Calcium (mg / g DW) 0.762 ± 0.047 0.805 ± 0.034

Manganese (μg / g DW) 9.30 ± 0.240 9.40 ± 0.211

Iron (μg / g DW) 41.5 ± 1.03 52.1 ± 3.07

Copper (μg / g DW) 12.3 ± 0.22 11.5 ± 0.23

doi:10.1371/journal.pone.0172180.t002
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five to six of the orange fruit from M38 plants, or six to eight of the red fruit from P31 plants,

would be sufficient to supply the US RDA.

Thus, the induced mutations producing high β-carotene concentrations in the fruits of

M38 plants had no detrimental effects on the concentrations of mineral elements required for

human nutrition in these fruit.

The concentrations of mineral elements found in the fruit of P31 and M38 plants grown in

this study were similar to those of green and red peppers available in the US [36], and slightly

lower (S, Ca, Mn), similar to (Mg, Fe) or slightly greater than (P, K, Zn, Cu) those reported for

green and red peppers available in the UK [38]. Previous studies have indicated that fruit from

different pepper varieties can vary significantly [40–41], but that the concentrations of most

mineral elements often do not change during the transition from green to botanically mature

fruit [42]. The concentrations of most mineral elements found in the fruit of P31 and M38

plants grown in this study were within the range found in previous studies (Mg, P, S, K, Zn,

Fe), with the exception of Cu, which was higher than generally observed [36, 40–44].

Conclusions

The present study demonstrates that β-carotene concentrations can be increased in pepper

fruit without adverse effects on their mineral composition. This should not only improve the

Vitamin A status of humans, but is also likely to increase the bioavailability of zinc and iron in

the diet.
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